

Schweizerisches Zentrum für angewandte Ökotoxikologie Centre Suisse d'écotoxicologie appliquée Eawag-EPFL

EQS - Vorschlag des Oekotoxzentrums für:

Trimethoprim

Ersterstellung: 31.03.2010 (Stand der Datensuche) 30.07.2010 (Einarbeitung des Gutachtens) 1. Aktualisierung: 18.12.2015 (Stand der Datensuche) 18.01.2017 (Einarbeitung des Gutachtens)

1. EQS-Vorschläge

CQK (AA-EQS): 120 µg/L (vor Aktualisierung 60 µg/L)

AQK (MAC-EQS): 214 µg/L (vor Aktualisierung 1100 µg/L)

Das chronische Qualitätskriterium (CQK \triangleq AA-EQS) und das akute Qualitätskriterium (AQK \triangleq MAC-EQS) wurden nach dem TGD for EQS der Europäischen Kommission (EC, 2011) hergeleitet. Damit die Dossiers international vergleichbar sind, wird im Weiteren die Terminologie des TGD verwendet.

2. Physikochemische Parameter

Tab. 1: Geforderte Identitäts- und physikochemische Parameter nach dem TGD for EQS (EC, 2011) für Trimethoprim. Zusätzliche Eigenschaften wurden kursiv angegeben. Die angegebenen Werte wurden soweit möglich zwischen experimentellen Werten (exp) und abgeschätzten, modellierten Werten (est) unterschieden.

Eigenschaften	Wert	Referenz
IUPAC Name	5-[(3,4,5- trimethoxyphenyl)methyl]pyrimidine-2,4- diamine	http://www.drugbank.ca/dr ugs/DB00440
Pharmazeutische Produktgruppe	Antibiotika	
Strukturformel	H_2N N H_2N H_2N H_2 H_2N H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_3	OECD Tool-Box 1.1
CAS-Nummer	738-70-5	EPI Suite 4.1 (US EPA 2012)
EINECS-Nummer	212-006-2	ECHA Infocard 2016 ⁽¹⁾
Summenformel	C ₁₄ H ₁₈ N ₄ O ₃	EPI Suite 4.1 (US EPA 2012)
SMILES-code	COc2cc(Cc1cnc(N)nc1N)cc(OC)c2OC	EPI Suite 4.1 (US EPA 2012)
Molekulargewicht (g·mol ⁻¹)	290.32	EPI Suite 4.1 (US EPA 2012)
Schmelzpunkt (°C)	199-203 (exp)	EPI Suite 4.1 (US EPA 2012)
Siedepunkt (°C)	449.23 (est)	EPI Suite 4.1 (US EPA 2012)
Dampfdruck (Pa)	1 E-06 (est)	EPI Suite 4.1 (US EPA 2012)
Henry's-Konstante (Pa⋅m ³ ⋅mol ⁻¹)	1.247 E-07 (est); 2.42 E-09 (est)	EPI Suite 4.1 (US EPA 2012)
Wasserlöslichkeit (mg·L ⁻¹)	400 (exp, bei 25°C)	Yalkowsky & Dannenfels (1992), zitiert in EPI Suite 4.1 (US EPA 2012)
р <i>К</i> а	4.29 (est), 7.3 (exp), 6.6 (exp)	Watson and Stewart 1986, Budavari 1996

¹ https://echa.europa.eu/substance-information/-/substanceinfo/100.010.915

Eigenschaften	Wert	Referenz		
<i>n</i> -Octanol/Wasser Verteilungskoeffizient	log K _{ow} : 0.73 (est); 0.91 (exp)	Hansch et al. (1995), zitiert in EPI Suite 4.1 (US EPA 2012)		
	log K _{ow} : 0.64	Hoffmann-La Roche 2008		
	logD: 0.74 bei pH 7.4 log <i>K</i> _{ow} : 1.115	Zhu <i>et al.</i> 2002, und Zhao et al. 2002, zitiert in Straub 2013		
Sediment/ Wasser Verteilungs- koeffizient (log K_{oc} oder log K_{p})	log K _{oc} = 1.89 (est) - 2.86 (est)	EPI Suite 4.1 (US EPA 2012)		
Verteilungskoeffizient zwischen suspendierter Materie und Wasser (K _{susp-water})	Es konnte kein Wert recherchiert werden. Der K _d (Verteilung zwischen Wasser und Klärschlamm) beträgt 76	Halling-Sørensen et al. 2000		
Biologische Abbaubarkeit	Nicht leicht biologisch Abbaubar (est)	EPI Suite 4.1 (US EPA 2012)		

3. Allgemeines

- Anwendung: Trimethoprim (TMP) wird als Antibiotikum zur Behandlung von Harnwegsinfektionen und Infektionen der oberen Luftwege eingesetzt. Als Kombinationspräparat bestehen weitere Anwendungsmöglichkeiten. Bei einer Kombination mit Sulfonamiden insbesondere mit Sulfamethoxazol potenziert sich die Wirkung (http://www.drugbank.ca/drugs/DB00440).
- <u>Wirkungsweise:</u> Trimethoprim ist ein Dihydrofolatreduktase (DHFR)-Inhibitor welcher die Folsäure-Synthese von grampositiven und gramnegativen Keimen hemmt. Fast alle Zellen von Pflanzen, Invertebraten und Vertebraten enthalten DHFR. Das Enzym unterscheidet sich in strukturellen Details bei den verschiedenen taxonomischen Gruppen, wodurch sich unterschiede in der Spezifität ergeben (Franklin and Snow 2005).
- <u>Analytik:</u> Santos et al. (2010) präsentieren eine Auswahl an Studien, in denen Trimethoprim in verschiedenen Matrices analytisch bestimmt wurden. Alle beschriebenen Methoden benutzten eine Festphasenextraktion (SPE) und LC/MS oder LC-MS/MS. Die Nachweisgrenzen (LOD) variieren von 0.25 ng/L (Trinkwasser) bis 30 ng/L (Oberflächenwasser). Für Abwasser wurde ein LOED von 50 ng/L berichtet. Eine Bestimmungsgrenze (LOQ) von 10 ng/L (in Oberflächenwasser) wurde in der Studie von Lam (2004) berichtet.
- Stabilität:Die in Straub (2013) zusammengetragene Literatur legt den Schluss nahe, dass
Trimethoprim unter natürlichen Bedingungen relativ stabil gegenüber Hydrolyse
und Photolyse ist. In einem experimentellen Ansatz mit natürlichem Wasser und
unter natürlichem Sonnenlicht degradierten nur ca. 2 % TMP innerhalb von 72 h.
Lam et al. 2004 testeten den Einfluss von Sonnenlicht, Hydrolyse und
Biodegradation auf die Stabilität von Trimethoprim. Dazu wurde natürliches
Seewasser (ohne Sediment) nativ oder autoklaviert entweder im Freien (August,

Toronto, Kanada) oder im Dunkeln für 30 Tage inkubiert. Es fand kein Abbau im Dunkeln statt. Unter Sonnenlicht-Einfluss bauten sich nach ca. 12 Tagen 50% des Trimethoprims ab. Konzentrationen in nativen und sterilisierten Proben waren vergleichbar. Es wurde daher geschlussfolgert, dass im Vergleich zur Photolyse, Hydrolyse und biologischer Abbau eine untergeordnete Rolle spielen. In Mikrokosmen ergaben sich für Trimethoprim unter Lichteinfluss eine Halbwertszeit von 5.7 Tagen. Die Mesokosmen enthielten jedoch Sedimen/Boden, so dass sich die kürzere Halbwertszeit zum Teil durch Bindung an Sedimentpartikel erklärt. In Biotests (ohne Sediment), werden für gewöhnlich Lichtintensitäten eingesetzt, die deutlich unterhalb der natürlichen Sonnenstrahlung liegt. Zum Vergleich, im Standard Algentest nach OECD wird eine Beleuchtungsstärke von 4440 – 8880 lux empfohlen. Bei klarem Himmel hat direktes Sonnenlicht eine Stärke von > 100'000 lux⁽²⁾. In chronischen Daphnientests (16h-Beleuchtung pro Tag), in denen das Testmedium regelmässig erneuert wurde, ergab sich eine Wiederfindung von 100% nach 48 h (Dalla Bona et al. 2015). Für alle Kurzzeitexpositionen (bis 96 h) sowie für alle Tests in denen die Testlösungen regelmässig (mindestens alle 96 h) oder kontinuierlich erneuert wurden (Durchfluss-Systeme), ist die analytische Verifizierung der Testkonzentrationen somit kein zwingendes Kriterium für die Validität einer Studie, da davon ausgegangen werden kann, dass die Testkonzentrationen unter diesen Bedingungen (auch unter Lichteinfluss), hinreichend stabil waren. Andere Einflussfaktoren auf die tatsächliche Testkonzentration sind die Löslichkeit der Testsubstanz im Testmedium und das korrekte Einwiegen der Testsubstanz. Während sich die Löslichkeit anhand der Wasserlöslichkeit und der eingesetzten Testkonzentrationen plausibilisieren lässt, kann es beim Einwiegen zu nicht systematischen Unterschieden kommen, die anhand der Angaben im jeweiligen Testbericht nicht ersichtlich sind. Bei deutlichen Unterschieden (> Faktor 10) zwischen Toxizitätswerten, die auf nominalen Konzentrationen beruhen, und analytisch validierten Werten, sollen daher die analytisch validierten bevorzugt werden.

Existierende EQS: Es liegen derzeit keine EQS-Vorschläge aus anderen Ländern vor.

² https://en.wikipedia.org/wiki/Daylight

4. Ökotoxikologische Parameter

Tab.2: Effektdatensammlung für Trimethoprim. Literaturdaten die in grau dargestellt wurden können nach dem TGD for EQS (EC, 2011) nicht direkt zur EQS-Herleitung verwendet werden, sollen aber als zusätzliche Information genannt werden. Eine Bewertung der Validität³ wurde nach den Klimisch-Kriterien (Klimisch et al. 1997) durchgeführt, bzw. nach den CRED-Kriterien für Studien die im Zuge der EQS-Aktualisierung herangezogen wurden (Moermond *et al.* 2016). Eine Neubewertung der vor der Aktualisierung aufgeführter Studien wurde nur in Ausnahmefällen durchgeführt (e.g. für Schlüsselstudien). Eine Unterscheidung in nominale und tatsächliche Testkonzentration wurde in der Tabelle nur für EQS-relevante Studien vollzogen. Für Algentests werden gemäss TGD for EQS Werte basierend auf der Wachstumsrate bevorzugt, wenn mehrere Endpunkte in einer Studie angegeben sind. Liegt für einen Endpunkt aus einer Studie sowohl ein EC10 als auch ein NOEC, wir der tiefere Wert bevorzugt, ausser existieren Grunde, den anderen Wert zu bevorzugen (e.g. weil der EC10 aufgrund niedriger maximaler Effekte nur ungenau bestimmt werden kann). Der derzeitig anerkannte Speziesname wurde angegeben und der in der Studie verwendete Name wurde in Klammern angegeben. Die für die EQS Ableitung relevantesten Effektwerte pro Spezies aus einer Studie wurden unterstrichen. kA = keine Angaben.

	EFFEKTDATENTABELLE									
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (mg/l)	Notiz	Validität	Literaturquelle
	akute Effektdaten - limnisch									
Bakterien	Belebtschlammpopulation	Atmungsinhibition	3	h	EC50	=	17.8	D	C3	Halling-Sørensen et al. 2000
Bakterien	Pseudomonas putida	Wachstum	kA	-	EC50	=	190.2		3	Alexy et al. 2002
Bakterien	Enterococcus faecalis	Wachstum	kA	-	EC50	=	0.242		3	Alexy et al. 2002
Cyanobakterien	Anabaena cylindrica	Wachstum	144	h	EC50	V	200	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Anabaena flos-aquae	Wachstum	144	h	EC50	~	200	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Anabaena flos-aquae	Wachstumsrate	72	h	EC50	=	<u>253</u>	A, S	R2, C1	Kolar <i>et al.</i> 2014
Cyanobakterien	Anabaena flos-aquae	Wachstumsrate	96	h	EC50	=	<u>91.7</u>	B4, S	R2, C1	Guo <i>et al.</i> 2016
Cyanobakterien	Anabaena variabilis	Wachstum	144	h	EC50	=	11	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Microcystis aeroginosa	Wachstum (über Chlorophyll- Bestimmung)	7	d	EC50	=	<u>112</u>	С	1	Holten-Lützhøft et al. 1999
Cyanobakterien	Microcystis aeruginosa	Wachstum	144	h	EC50	=	150	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Microcystis wesenbergii	Wachstum	144	h	EC50	~	200	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Nostoc sp.	Wachstum	144	h	EC50	=	53	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Synechococcus leopoldensis	Wachstum	144	h	EC50	V	200	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Synechococcus leopoldensis	Wachstumsrate	96	h	EC50	~	100	B4, S	R2, C1	Guo et al. 2016
Cyanobakterien	Synechococcus sp.	Wachstum	144	h	EC50	~	200	D, M	R4, C1	Ando et al. 2007, neu bewertet
Algen	Chlorella vulgaris	Wachstumsrate	96	h	EC50	>	100	B, S	R2, C1	Guo <i>et al.</i> 2016
Algen	Desmodesmus subspicatus	Wachstumsrate	96	h	EC50	>	63	B, S	R2, C1	Guo <i>et al.</i> 2016
Algen (Diatomee)	Navicula pelliculosa	Wachstumsrate	96	h	EC50	=	2.14	B, S	R2, C1	Guo <i>et al.</i> 2016

³ Nach Moermond *et al.* (2016) wird Validität unterteilt in Verlässlichkeit (R) und Relevanz (C), wobei die zu vergebenen Klassen (1-4) mit den Klimisch Klassen übereinstimmen. Eine Evaluierung der Verlässlichkeit wurde nicht vorgenommen, wenn eine Studie als nicht relevant (C3) bewertet wurde.

	EFFEKTDATENTABELLE									
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (mg/l)	Notiz	Validität	Literaturquelle
Algen (Diatomee)	Phaeodactylum tricornutum	Wachstumsrate	96	h	EC50	=	21.7	B, S	R2, C1	Guo <i>et al.</i> 2016
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate	96	h	EC50	>	63	B4, S	R2, C1	Guo <i>et al.</i> 2016
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstum (Fluoreszenz)	72	h	EC50	=	56.01	B2, G	R3, C1	Minguez et al. 2014
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstum	96	h	EC50	=	83.8	B1, S	R3, C1	De Liguoro <i>et al.</i> 2012
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Biomasse	72	h	EC50	=	<u>40</u>	C, S	2	Yang et al. 2008
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstum	72	h	EC50	=	96.7	kA	4	Blaise <i>et al.</i> 2006
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstum	72	h	EC50	=	<u>110</u>	D, J	2	Halling-Sørensen et al. 2000
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Biomasse	72	h	EC50	=	70	B1, S	R2, C1	Bogers 1996a GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate (basierend auf Fluoreszenz des extrahierten Chlorophylls)	72	h	EC50	=	<u>130</u>	C, S	1	Holten-Lützhøft <i>et al.</i> 1999
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate	72	h	EC50	=	<u>80.3</u>	D, S	2	Eguchi et al. 2004
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate	72	h	EC50	=	<u>129</u>	A, S	R2, C1	Kolar <i>et al.</i> 2014
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate	72	h	EC50	=	<u>98</u>	A, S	R2, C1	Bogers 1996a GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
		Geom. Mittelwert	72	h	EC50	=	107.2			
Wasserpflanzen	Lemna minor	Wachstumsrate (Trockengewicht)	7	d	EC50	^	400	A, S	R1, C1	Oggier 2011 GLP, GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Wasserpflanzen	Lemna minor	Yield (Trockengewicht)	7	d	EC50	=	265	A, S	R1, C1	Oggier 2011 GLP, GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Wasserpflanzen	Lemna minor	Wachstumsrate (Frondzahl)	7	d	EC50	=	215	A, S	R1, C1	Oggier 2011 GLP, GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Wasserpflanzen	Lemna minor	Yield (Frondzahl)	7	d	EC50	=	<u>133</u>	A, S	R1, C1	Oggier 2011 GLP, GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Wasserpflanzen	Lemna minor	Wachstum - Frischgewicht	7	d	EC50	=	<u>27.4</u>	B1, U	R2, C1	De Liguoro <i>et al.</i> 2012
Planaria	Dugesia japonica	Mortalität	24	h	LC50	=	331	C, S	R2, C1	Li 2013

		EFFEKTDA	TENTA	BELLE						
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (mg/l)	Notiz	Validität	Literaturquelle
Planaria	Dugesia japonica	Mortalität	48	h	LC50	=	271.6	C, S	R2, C1	Li 2013
Planaria	Dugesia japonica	Mortalität	72	h	LC50	=	243.9	C, S	R2, C1	Li 2013
Planaria	Dugesia japonica	Mortalität	96	h	LC50	=	<u>235.6</u>	C, S	R2, C1	Li 2013
Ciliaten	Tetrahymena pyriformis	Wachstum	24	h	NOEC	=	0.0029	C, H, S	R3, C3	Láng and Kohidai 2012
Ciliaten	Tetrahymena pyriformis	Wachstum	24	h	LOEC	=	0.029	C, H, S	R3, C3	Láng and Kohidai 2012
Nesseltiere	Hydra attenuata	morphologische Veränderungen	96	h	EC50	>	100	G	3	Quinn et al. 2008
Nesseltiere	Hydra attenuata	morphologische Veränderungen	96	h	EC50	>	85.3	kA	4	Blaise et al. 2006
Rotiferen	Brachionus koreanus	Mortalität	24	h	LC50	=	189.5	С	R3, C2	Rhee et al. 2012
Krebstiere	Daphnia curvirostris	Immobilisierung	48	h	EC50	=	34.02	В	R2, C1	Dalla Bona <i>et al.</i> 2014
Krebstiere	Daphnia magna	Immobilisierung	24	h	EC50	=	155.6	D	R2, C1	Park und Choi 2008
Krebstiere	Daphnia magna	Immobilisierung	48	h	NOEC	=	100	kA	4	Fass-Datenbank
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	>	100	B2, G	R3, C2	Minguez et al. 2014
Krebstiere	Daphnia magna	Immobilisierung	48	h	LOEC	>	100	B1, S	R1, C1	Bogers 1996b GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	=	123	D	2	Halling-Sørensen et al. 2000
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	=	149	B1	2	De Liguoro et al. 2009
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	=	167.4	F	R2, C1	Kim et al. 2007
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	=	<u>92</u>	D	R2, C1	Park und Choi 2008
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	=	<u>100</u>	A, S	R2, C1	Kolar <i>et al.</i> 2014
		Geometrischer Mittelwert					123			
Krebstiere	Daphnia magna	Immobilisierung	96	h	EC50	=	120.7	F	R2, C1	Kim et al. 2007
Krebstiere	Moina macrocopa	Immobilisierung	24	h	EC50	=	144.8	D	R2, C1	Park und Choi 2008
Krebstiere	Moina macrocopa	Immobilisierung	48	h	EC50	=	54.8	D	R2, C1	Park und Choi 2008
Krebstiere	Thamnocephalus platyurus	Mortalität	24	h	LC50	=	161.2	kA	4	Blaise et al. 2006
Amphibien	Xenopus laevis	Embryomortalität	96	h	NOEC	>	100	C, R	2	Richards und Cole 2006
Amphibien	Xenopus laevis	embryonale Veränderungen	96	h	NOEC	>	100	C, R	2	Richards und Cole 2006
Fische	Danio rerio	Mortalität	72	h	NOEC	=	100	kA	4	Hoffmann-La Roche 2008
Fische	Danio rerio	Mortalität	72	h	LC50	>	100	D	4	Halling-Sørensen et al. 2000
Fische	Danio rerio	Mortalität	72	h	NOEC	2	100	D	4	Halling-Sørensen et al. 2000
Fische	Danio rerio	Mortalität	96	h	EC50	=	123	kA	4	FASS 2015
Fische	Danio rerio	Embryo-Mortalität und subletale Endpunkte	144	h	NOEC	>	10	B1, S	2	Carlsson <i>et al.</i> 2013
Fische	Oryzias latipes	Mortalität	48	h	LC50	>	100	C, F, R	2	Kim et al. 2007
Fische	Oryzias latipes	Mortalität	96	h	LC50	>	100	C, F, R	2	Kim et al. 2007
Fische	Poecilia reticulata	Schwimmaktivität	14	d	EC50	=	92.7	B1, R	R2, C3	De Liguoro <i>et al.</i> 2012

	EFFEKTDATENTABELLE									
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (mg/l)	Notiz	Validität	Literaturquelle
		akute Effel	tdaten –	marin	•					
Bakterien	Aliivibrio fischeri (Vibrio fischeri)	Lumineszenzinhibition	5	min	EC50	=	165.1	F, L	R2, C1	Kim et al. 2007
Bakterien	Aliivibrio fischeri (Vibrio fischeri)	Lumineszenzinhibition	15	min	EC50	=	<u>176.7</u>	F, L	R2, C1	Kim et al. 2007
Bakterien	Aliivibrio fischeri (Vibrio fischeri)	Lumineszenzinhibition	15	min	EC50	=	183.3	kA	4	Blaise et al. 2006
Algen (Diatomee)	Phaeodactylum tricornutum	Wachstumsrate	72	h	EC50	=	<u>5.1</u>	B3, G, S	R2, C1	Claessens <i>et al.</i> 2013
Algen	Rhodomonas salina	Chlorophyll-Bestimmung/Wachstum	72	h	EC50	=	16	С, К	1	Holten-Lützhøft et al. 1999
Algen	Skeletonema marinoi	Wachstum	72	h	EC50	=	3.2	B2, G, L	R3, C1	Minguez et al. 2014
Mollusca	Crassostrea gigas	Larvenentwicklung	24	h	EC50	2	10-100	B3, L, G	R4	Claessens et al. 2009, neu bewertet
Kleinkrebse	Artemia salina	Immobilisierung	48	h	EC50	^	100	B2, G, L	R3, C1	Minguez et al. 2014
subchronische und chronische Daten										
Cyanobakterien	Anabaena cylindrica	Wachstum	144	h	NOEC	× II	200	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Anabaena flos-aquae	Wachstum	144	h	NOEC	< 1	200	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Anabaena flos-aque	Wachstumsrate	72	h	EC10	=	26	A, S	R2, C1	Kolar et al. 2014
Cyanobakterien	Anabaena flos-aque	Wachstumsrate	96	h	EC10	=	18.3	B4, S	R2, C1	Guo <i>et al.</i> 2016
Cyanobakterien	Anabaena flos-aque	Wachstumsrate	96	h	NOEC	=	<u>13.6</u>	B, S	R2, C1	Guo <i>et al.</i> 2016
Cyanobakterien	Anabaena variabilis	Wachstum	144	h	NOEC	=	3.1	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Microcystis aeruginosa	Wachstum	144	h	NOEC	=	100	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Microcystis wesenbergii	Wachstum	144	h	NOEC	=	3.1	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Nostoc sp.	Wachstum	144	h	NOEC	=	3.1	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Synechococcus leopoldensis	Wachstum	144	h	NOEC	=	13	D, M	R4, C1	Ando et al. 2007, neu bewertet
Cyanobakterien	Synechococcus leopoldensis	Wachstumsrate	96	h	EC10	=	28.33	B4, S	R2, C1	Guo <i>et al.</i> 2016
Cyanobakterien	Synechococcus leopoldensis	Wachstumsrate	96	h	NOEC	=	<u>60</u>	B4, S	R2, C1	Guo <i>et al.</i> 2016
Cyanobakterien	Synechococcus sp.	Wachstum	144	h	NOEC	=	50	D, M	R4, C1	Ando et al. 2007, neu bewertet
Algen	Chlorella vulgaris	Wachstumsrate	96	h	EC10	>	100	B, S	R2, C1	Guo <i>et al.</i> 2016
Algen	Chlorella vulgaris	Wachstumsrate	96	h	NOEC	>	100	B, S	R2, C1	Guo <i>et al.</i> 2016
Algen	Desmodesmus subspicatus	Wachstumsrate	96	h	EC10	>	100	B, S	R2, C1	Guo <i>et al.</i> 2016
Algen	Desmodesmus subspicatus	Wachstumsrate	96	h	NOEC	>	100	B, S	R2, C1	Guo <i>et al.</i> 2016
Algen (Diatomee)	Navicula pelliculosa	Wachstumsrate	96	h	EC10	=	1.32	B, S	R2, C1	Guo <i>et al.</i> 2016
Algen (Diatomee)	Navicula pelliculosa	Wachstumsrate	96	h	NOEC	=	<u>1.20</u>	B, S	R2, C1	Guo <i>et al.</i> 2016
Algen (Diatomee)	Phaeodactylum tricornutum	Wachstumsrate	96	h	EC10	=	5	B, S	R2, C1	Guo <i>et al.</i> 2016
Algen (Diatomee)	Phaeodactylum tricornutum	Wachstumsrate	96	h	NOEC	=	6	B, S	R2, C1	Guo <i>et al.</i> 2016
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate	96	h	EC10	>	63	B4, S	R2, C1	Guo <i>et al.</i> 2016
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate	96	h	NOEC	≥	63	B4, S	R2, C1	Guo <i>et al.</i> 2016
Algen	Raphidocelis subcapitata	Wachtumsrate und Biomasse	72	h	NOEC	=	32	B1, J, S	R2, C1	Bogers 1996a GLP, zitiert in Straub

		EFFEKTDA	TENTA	BELLE						
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (mg/l)	Notiz	Validität	Literaturquelle
	(Pseudokirchneriella subcapitata)									2013 und von Hoffmann-La Roche zur Verfügung gestellt
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate	72	h	EC10	=	59	B1, S	R2, C1	Bogers 1996a GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Biomasse	72	h	EC10	=	36	B1, S	R2, C1	Bogers 1996a GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Biomasse	72	h	NOEC	=	<u>16</u>	C, S	2	Yang et al. 2008
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate	72	h	NOEC	=	<u>25.5</u>	D, S	2	Eguchi et al. 2004
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate	72	h	EC10	=	<u>65</u>	A, S	R2, C1	Kolar <i>et al.</i> 2014
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstum	96	h	NOEC	=	12.5	B1	R3, C1	De Liguoro <i>et al.</i> 2012
Wasserpflanzen	Lemna gibba	Gewicht, Blattzahl, Pigmente	7	d	NOEC	>=	1		2	Brain et al. 2004
Wasserpflanzen	Lemna minor	Wachstumsrate (Trockengewicht)	7	d	EC10	=	134	A, S	R1, C1	Oggier 2011 GLP, GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Wasserpflanzen	Lemna minor	Wachstumsrate (Trockengewicht)	7	d	NOEC	=	103	A, J, S	R1, C1	Oggier 2011 GLP, GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Wasserpflanzen	Lemna minor	Yield (Trockengewicht)	7	d	EC10	=	85.3	A, J, S	R1, C1	Oggier 2011 GLP, GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Wasserpflanzen	Lemna minor	Yield (Trockengewicht)	7	d	NOEC	=	103	A, S	R1, C1	Oggier 2011 GLP, GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Wasserpflanzen	Lemna minor	Wachstumsrate (Frondzahl)	7	d	EC10	=	82.3	A, J, S	R1, C1	Oggier 2011 GLP, GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Wasserpflanzen	Lemna minor	Wachstumsrate (Frondzahl)	7	d	NOEC	=	53.5	A, S	R1, C1	Oggier 2011 GLP, GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Wasserpflanzen	Lemna minor	Yield (Frondzahl)	7	d	EC10	=	<u>62</u>	A, J, S	R1, C1	Oggier 2011 GLP, GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Wasserpflanzen	Lemna minor	Yield (Frondzahl)	7	d	NOEC	=	53.5	A, S	R1, C1	Oggier 2011 GLP, GLP, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt
Wasserpflanzen	Lemna minor	Wachstum	7	d	NOEC	=	53.5	E, J	1	Oggier 2011, zitiert in Straub 2013

	EFFEKTDATENTABELLE									
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (mg/l)	Notiz	Validität	Literaturquelle
Wasserpflanzen	Lemna minor	Wachstum Frischgewicht	7	d	NOEC	=	<u>6.25</u>	B1	R2, C1	De Liguoro et al. 2012
Rotiferen	Brachionus koreanus	Mortalität	10	d	NOEC	=	124.4	C, U	R3, C2	Rhee et al. 2012
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC10	=	66	A, S	R2, C1	Kolar et al. 2014
Krebstiere	Daphnia magna	Reproduktion	21	d	EC50	=	15	B, R	R2, C1	Dalla Bona et al. 2015
Krebstiere	Daphnia magna	Wachstum	21	d	EC50	=	38	B, R	R2, C1	Dalla Bona et al. 2015
Krebstiere	Daphnia magna	Wachstum	21	d	NOEC	=	6.3	B, R	R2, C2	Dalla Bona <i>et al.</i> 2015
Krebstiere	Daphnia magna	Reproduktion (Anzahl Nachkommen pro Weibchen)	21	d	NOEC	=	<u>6.3</u>	B, R	R2, C1	Dalla Bona <i>et al.</i> 2015
Krebstiere	Daphnia magna	Reproduktion (Anzahl Nachkommen pro Weibchen)	21	d	NOEC	=	<u>6</u>	D, R	R2, C1	Park und Choi 2008
		Geometrischer Mittelwert	21	d	NOEC	=	6.15			
Krebstiere	Daphnia magna	Reproduktion	21	d	NOEC	=	3.12	B1	R3, C1	De Liguoro et al. 2012
Krebstiere	Daphnia magna	Reproduktion	21	d	EC50	=	8.21	B1	R3, C1	De Liguoro et al. 2012
Fische	Danio rerio	Fish EST Test nach OECD 210; Endpunkte: Schlupferfolg, Mortalität, Körper-Abnormitäten, Trockengewicht der überlebenden Fische	35	d	NOEC	~	<u>100</u>	B1, T	R1, C1	Gilberg und Hamberger 2011, zitiert in Straub 2013 und von Hoffmann- La Roche zur Verfügung gestellt
		(sub)chronische	Effektda	ten – ma	arin					
Algen (Diatomee)	Phaeodactylum tricornutum	Wachstumsrate	72	h	EC10	=	2.4	B3, L, S	R2, C1	Claessens <i>et al.</i> 2013

Notizen

- A Effekt Konzentration bezogen auf gemessene Konzentrationen
- B1 Effekt Konzentration bezogen auf nominale Konzentration. Nachmessung hat stattgefunden und Wiederfindung lag zwischen 80-120% der nominalen Konzentration.
- B2 Die Autoren geben an, dass Ergebnisse auf die nominale Konzentrationen bezogen sind. Lösungen (vermutlich Stock-Lösungen) entsprachen immer der gewollten (nominalen) Konzentration. Konzentrationen nach 48 h seien unverändert. Daten liegen nicht vor.
- B3 In der Publikation steht, dass Testkonzentrationen analytisch bestimmt wurden. Ergebnisse dieser Untersuchung wurden aber nicht präsentiert und es wurde im Folgenden auch nicht definiert, ob sich Ergebnisse auf die nominale oder gemessene Konzentration beziehen.
- B4 Wiederfindung lag bei <80%. Daher wurde der TWA (time weighted average) der Konzentrationen über die Expositionsdauer berechnet
- C Nominale Konzentration (nicht analytisch verifiziert)
- D Keine Angaben zur chemischen Analytik. Nominale Konzentrationen werden angenommen.
- F Lösungsmittelkonzentration überschreitet die nach dem TGD for EQS vorgesehene Höchstmenge von 100 μL/L bzw. 0.01% um weniger als das 5-fache. Testergebnis wird daher noch als verlässlich (mit Einschränkung) angesehen.
- G Lösungsmittelkonzentration überschreitet die nach dem TGD for EQS vorgesehene Höchstmenge von 100 µL/L bzw. 0.01% deutlich (>500 µL/L oder >0.05%). Testergebnis daher nicht verlässlich.
- H Keine Angabe zur Verwendung eines Lösungsmittels oder der eingesetzten Konzentration.

- J Dieser NOEC/EC10 wurde bevorzugt, da er gegenüber dem alternativen NOEC/EC10 robuster erscheint (welche daher in grau dargestellt wird) Zum Beispiel wird bei schlechter Übereinstimmung der Messdaten mit der Regressionskurve, ein NOEC bevorzugt.
- K Keine Angabe zur Salinität des Testmediums
- L Salinität nicht angegeben, aber Testmedium nach ISO 10253 hergestellt. Salinität daher wahrscheinlich zwischen 30 und 33‰.
- M Nachtrag am 20.09.2017: Für ein nachfolgendes EQS-Dossier (Erythromycin, Stand 2017) wurde die Studie von Ando *et al.* 2007 über eine Plausibilisierung für die EQS-Herleitung verwendet. In diesem Dossier stellen die Diatomeen die sensitivste Gruppe dar, sodass ein Einbezug der Studie von Ando *et al.* 2007 über die AF-Methode nicht zu einer numerischen Änderung der UQK führen würde. Daher wurde im vorliegenden Dossier (Stand 2015) nachträglich keine Veränderung der Studienbewertung vorgenommen.
- R semi-statisch
- S statisch
- T Durchfluss System (Engl.: flow through)
- U Nicht angegeben, ob Testsubstanz erneuert wurde, oder statischer Ansatz angewandt.

5. Graphische Darstellung der Toxizitätsdaten

Abbildung 1 zeigt alle validen Kurzzeit- und Langzeit-Effektdaten für Trimethoprim. Die sensitivsten Organismen gehören zur Gruppe der Primärproduzenten. Allerdings reichen die Effektkonzentrationen innerhalb der Gruppe der Primärproduzenten über mehrere Grössenordnungen. Bei den beiden sensitivsten Spezies im akuten und chronischen Datensatz handelt es sich jeweils um eine Diatomeen-Art (Kieselalge).

Abb.1: Kurzzeit- und Langzeit-Effektdaten von Trimethoprim für aquatische Organismen. In der Gruppe der Primärproduzenten sind Effektdaten zu Cyanobakterien, Algen und Wasserpflanzen zusammengefasst. Für Fische liegen lediglich "grösser als" Wert vor (mit Sternchen (*) gekennzeichnet).

5.1. Vergleich mariner und limnischer Spezies

Ein sinnvoller statistische Vergleich der Sensitivitäten limnischer und mariner Arten ist nicht möglich, da im akuten Datensatz lediglich Effektdaten für ein marines Bakterium und zwei marine Algen vorliegen. Im chronischen Datensatz liegt nur ein Effektdatum für eine marine Alge vor. Dennoch scheinen marine Organismen nicht sensitiver als limnische Vertreter (Daten werden im Folgenden daher gleichwertig behandelt). Bei dem sensitivsten Organismus im akuten und chronischen Datensatz, *Navicula pelliculosa*, handelt es sich um eine Kieselalge, welche sowohl in limnischen als auch marinen Gewässern vorkommt. In einem ähnlichen Sensitivitätsbereich liegt die marine Kieselalge *Phaeodactylum tricornutum*. Sensitivitätsunterschiede zwischen limnischen und marinen Arten scheinen also weniger relevant als der Unterschied zwischen selbst benachbarten taxonomischen Gruppen. So zeigen sich einige Grünalgen-Arten und Cyanobakterien-Arten weitaus weniger sensitiv als die Kieselalgen.

6. Herleitung der EQS

EQS Vorschläge werden gemäss dem TGD für EQS hergeleitet (EC 2011). Um chronische und akute Qualitätsziele herzuleiten, kann die Sicherheitsfaktormethode (AF-Methode) auf der Basis von akuten und chronischen Toxizitätsdaten verwendet werden. Dabei wird mit dem tiefsten chronischen Datenpunkt ein AA-EQS (Annual-Average-Environmental-Quality-Standard) und mit dem tiefsten akuten Datenpunkt ein MAC-EQS (Maximum-Acceptable-Concentration-Environmental-Quality-Standard) abgeleitet. Wenn der Datensatz umfassend genug ist (hier nicht der Fall), können diese EQS zusätzlich mittels einer Speziessensitivitätsverteilung (SSD) bestimmt werden.

7. Chronische Toxizität

7.1. AA-EQS Herleitung mit der AF-Methode

Zusammenstellung der niedrigsten Langzeit-Toxizitätswerte für Trimethoprim

Gruppe	Spezies	Wert	Konz. in mg/L	Literatur
<u>Basisdatensatz</u>				
Primärproduzenten	Navicula pelliculosa	NOEC	1.2	Guo <i>et al.</i> 2016
Krebstiere	Daphnia magna	NOEC	6.15	Geom. Mittelwert aus: Park und Choi 2008 & Dalla Bona <i>et al.</i> 2015
Fische	Danio rerio	NOEC	≥100	Gilberg und Hamberger 2011, zitiert in Straub 2013 und von Hoffmann-La Roche zur Verfügung gestellt

Tab.3: Übersicht zu den kritischen Toxizitätswerten von Trimethoprim auf Wasserorganismen aus längerfristigen Untersuchungen.

Insgesamt liegen valide und belastbare NOEC- bzw. EC10-Werte für die Organismengruppen der Algen, Cyanobakterien und Krebstiere vor. Für Fische liegt kein belastbarer NOEC, aber ein valider "grösser als"-Wert vor. Aufgrund des Wirkmechanismus, kann man bei DHFR-Inhibitoren keine generelle sensitivste taxonomische Gruppe definieren, da nahezu alle Zellen von Pro- und Eukaryoten das Enzym DHFR besitzen. Das Enzym unterscheidet sich bei den verschiedenen taxonomischen Gruppen jedoch in strukturellen Details, wodurch sich Unterschiede in der Spezifität ergeben (Franklin and Snow 2005). Im vorliegenden Datensatz scheinen aber die Kieselalgen eine besonders empfindliche taxonomische Gruppe darzustellen. Nach dem TGD for EQS kann demnach der Sicherheitsfaktor (AF) von 10 verwendet werden (EC 2011). Der

empfindlichste belastbare Endpunkt liegt bei der Diatomee *Navicula pelliculosa* mit einem EC10 von 1.2 mg/L. Nach der AF-Methode ergibt sich daraus ein Langzeit-Qualitätskriterium von:

AA-EQS = 1.2 mg/L / 10 = **120 μg/L**

7.2. AA-EQS Herleitung mit anderen Methoden

Die Datenanforderungen nach TDG for EQS (EC, 2011) für die Erstellung einer Spezies-Sensitivitätsverteilung (SSD) sind nicht gegeben. Es fehlen u.a. belastbare Daten für Insekten und Fische.

Es liegen keine Mesokosmen-Studien vor, von denen sich ein AA-EQS ableiten liesse.

8. Akute Toxizität

8.1. MAC-EQS Herleitung mit der AF-Methode

Gruppe	Spezies	Wert	Konz. in mg/L	Literatur					
Basisdatensatz	•								
Primärproduzenten	Navicula pelliculosa	EC50	2.14	Guo et al. 2016					
Kleinkrebse	Daphnia curvirostris	EC50	34.02	Dalla Bona et al. 2014					
Fische	Oryzias latipes	LC50	> 100	Kim et al. 2007					
Weitere									
Planaria	Dugesia japonica	LC50	235.6	Li 2013					

Tab. 4: Übersicht der kritischen akuten Toxizitätswerte von Trimethoprim auf Wasserorganismen.

Tab. 5: Gefährlichkeitsklassierung anhand der niedrigsten gemessenen EC50-Werte (UN 2015).

Kategorie (akut)	niedrigster EC 50-Wert	erreichter Wert
nicht eingestuft	>100 mg/L	
3	>10 mg/L; <100mg/L	
2	<10 mg/L;>1mg/L	х
1	< 1mg/L	

Es liegen belastbare EC50-Werte für die Organismengruppen der Primärproduzenten und Kleinkrebse vor. Für die Organismengruppe der Fische konnten nur LC50-Werte von >100 mg/L recherchiert werden. Vertebraten scheinen allerdings vergleichsweise unempfindlich gegenüber Trimethoprim zu sein. So zeigte sich bis zu einer Konzentration vom 100 mg/L keine Embryomortalität in Xenopus laevis (Richards und Cole 2006). Um Kurzzeit-Qualitätskriterien (MAC-EQS) herzuleiten, kann die AF-Methode auf der Datenbasis von akuten Toxizitätsdaten verwendet werden. Die Diatomee Navicula pelliculosa (Bacillariophyceae) gehört zur trophischen Ebene der Primärproduzenten und zeigt den niedrigsten EC50-Wert von 2.14 mg/L (Guo et al. 2016). Die Sensitivität der marinen Kieselalge Phaeodactylum tricornutum liegt in einem ähnlichen Bereich. Der AF kann gemäss TGD for EQS (EC, 2011) auf 10 erniedrigt werden, wenn entweder die Standardabweichung der logarithmierten EC50-Werte < 0.5 ist, oder der Wirkmechanismus bekannt ist und ein repräsentativer Vertreter einer der empfindlichsten taxonomischen Gruppen im Effektdatensatz vertreten ist. Da für Fische aber keine exakten Werte vorliegen, dann die Standardabweichung der logarithmierten EC50-Werte nicht berechnet werden. Bei terrestrischen Pflanzen scheint Trimethoprim das Wurzelwachstum während der Keimung zu inhibieren (NOECs von <1, 0.1 und 1 mg/L) (Liu et al. 2009). Für den Endpunkt Wurzelwachstum liegen keine Effektdaten für höheren Wasserpflanzen vor. Die berichteten NOECs liegen aber in einem ähnlichen Bereich wie die NOECs/EC10 für Diatomeen. Es kann daher davon ausgegangen werden, dass mit hoher Wahrscheinlichkeit ein Vertreter einer der sensitivsten taxonomischen Gruppen im Datensatz vorhanden ist. Es wird daher ein Assessmentfaktor von 10 angewendet. Daraus resultiert ein Kurzzeit-Qualitätskriterium von:

MAC-EQS = 2.14 mg/L / 10 = 214 µg/L

8.2. MAC-EQS Herleitung mit anderen Methoden

Die Datenanforderungen nach TDG for EQS (EC, 2011) für die Erstellung einer SSD sind nicht gegeben. Es fehlen u.a. belastbare Daten für Insekten und Fische.

Es liegen keine Mesokosmen-Studien vor, von denen sich ein MAC-EQS ableiten liesse.

Bewertung des Bioakkumulationspotentials und der sekundären Intoxikation

Nach dem TGD for EQS (EC, 2011) soll zur Abschätzung des Risikos einer sekundären Intoxikation zunächst das Bioakkumulationspotential einer Substanz bestimmt werden. Dabei liefert ein gemessener Biomagnifikationsfaktor (BMF) von >1 oder ein Biokonzentrationsfaktor (BCF) >100 einen Hinweis auf ein Bioakkumulationspotential. Liegen keine verlässlichen BMFoder BCF-Daten vor, kann stattdessen der log K_{OW} zur Abschätzung verwendet werden, welcher ab einem Wert von >3 auf ein Bioakkumulationspotential hinweist.

Es liegen keine direkt belastbaren BCF oder BMF-Werte vor. Die niedrigen log K_{OW} Werte, welche sich von 0.64 bis 1.115 erstrecken (siehe Tabelle 1), weilen auf ein geringes Bioakkumulationspotential hin. Straub (2013) kommt nach eingehender Literaturrecherche ebenfalls zu der Schlussfolgerung, dass die Datenlage zwar spärlich sei, man aber von einem vernachlässigbaren Bioakkumulationspotential Trimethoprims ausgehen könne. Es liegen ferner keine besondere Hinweise für Säugertoxizität vor. Eine Bioakkumulationsabschätzung ist daher nicht erforderlich.

10. Schutz der aquatischen Organismen

Der Effektdatensatz für Trimethoprim umfasst alle 3 trophischen Ebenen bei den Kurz- und Langzeittoxizitäten. In beiden Fällen zeigte eine Diatomee die höchste Empfindlichkeit, doch liegen die Effektdaten für andere Algen und jene aus anderen Organismengruppen relativ nah (siehe Abb. 1 und Tab. 2).

Die hergeleiteten **MAC-EQS** von **214 µg/L** und **AA-EQS** von **120 µg/L** für Trimethoprim sollten nach jetzigem Erkenntnisstand einen ausreichenden Schutz für aquatische Organismen unterschiedlicher trophischer Ebenen bieten. Diese Qualitätskriterien berücksichtigen nicht die Möglichkeit von Antibiotika-Resistenzbildung durch konstant-hohe Belastungen von Gewässern. Die Datenlage hierzu ist spärlich und es kann keine allgemeingültige Aussage getroffen werden (Straub 2013).

Bei terrestrischen Pflanzen scheint Trimethoprim das Wurzelwachstum während der Keimung zu inhibieren (NOECs von <1, 0.1 und 1 mg/L) (Liu *et al.* 2009). Auch wenn diese Tests nicht mit aquatischen Ökotox-Test vergleichbar sind, wäre eine klärende Untersuchung mit höheren Wasserpflanzen (e.g. *Myriophyllum* sp.) wünschenswert, da Wurzelwachstum einen relevanten Endpunkt darstellt. Es liegen ebenfalls keine Effektdaten für Insekten und Mollusken vor. Die Studie von Parolini *et al* (2013) zeigt Effekte für physiologisch-/biochemische Endpunkte in einer Muschelspezies bei 0.3 µg/L, also weit unterhalb des vorgeschlagene AA-EQS. Allerdings wurde nur eine Konzentration getestet und es fehlen populationsrelevante Endpunkte nach TGD for EQS (EC 2011). Hier wäre eine klärenden Studie ebenfalls wünschenswert.

11. Änderungen gegenüber der Version vom 03/07/2010

Der Effektdatensatz wurde substantiell vergrössert, was im Falle des AA-EQS zu einer Verringerung des Assessmentfaktors führte. Einige der zuvor gelisteten Studien wurden erneut bewertet und teilweise invalidiert. Insgesamt führte dies zu einer Erhöhung des AA-EQS-Vorschlags von 60 μ g/L auf nunmehr 120 μ g/L. Der MAC-EQS-Vorschlag verringerte sich hingegen von 1100 μ g/L auf 214 μ g/L. Trotz der zahlreichen hinzugefügten Effektdaten ist der Datensatz immer noch nicht umfangreich genug um eine SSD Analyse vorzunehmen.

12. Literatur

- Alexy R, Kümpel T, Kümmerer K (2002): Summary of effects of antibiotics on environmental bacteria with a simple risk assessment. Posterbeitrag im Auftrag des Umweltbundesamtes (Grant No.: 29863722). http:// www.uniklinik-freiburg.de/.../Summary_effects_antibiotics-2002.pdf.
- Ando T, Nagase H, Eguchi K, Hirooka T, Nakamura T, Miyamoto K, Hirata K (2007): A novel method using cyanobacteria for ecotoxicity test of veterinary antimicrobial agents. Environ. Toxicol. Chem./SETAC, 26:601-606.
- Blaise, C., Gagné, F., Eullaffroy, P., & Férard, J. F. (2006). Ecotoxicity of selected pharmaceuticals of urban origin discharged to the Saint-Lawrence river (Québec, Canada): a review. Brazilian Journal of Aquatic Science and Technology, 10(2), 29-51.
- Bogers (1996a), Fresh water algal growth inhibition test with Trimethoprim NOTOX Project 180089; GLP-Studie; zitiert in Straub 2013; Originalbericht wurde von Hoffmann-La Roche zur Verfügung gestellt.
- Bogers (1996b), Acute toxicity study in Daphnia magna with Trimethoprim (static) NOTOX Project 180001; GLP-Studie; zitiert in Straub 2013; Originalbericht wurde von Hoffmann-La Roche zur Verfügung gestellt.
- Brain R A, Johnson D J, Richards S M, Sanderson H, Sibley P K, Solomon K R (2004): Effects of 25 pharmaceutical compounds to *Lemna gibba* using a seven-day static-renewal test. Environmental Toxicology and Chemistry, Vol. 23, No. 2:371–382.
- Budavari S (1996): The Merck index—an encyclopedia of chemicals, drugs and biologicals, 12th ed. Merck Research Labs, White House Station, NJ
- Carlsson G, Patring J, Kreuger J, Norrgren L, Oskarsson A (2013): Toxicity of 15 veterinary pharmaceuticals in zebrafish (Danio rerio) embryos. Aquatic Toxicology 126, 30-41.
- Claessens, K. Rappé, E. Monteyne, K. Wille, A. Goffin, A. Ghekiere, J. Mees, L. Vanhaecke, H. De Brabander, P. Roose, M. Vincx, C.R. Janssen. *Integrated Risk assessment and monitoring of micropollutants along the Belgian Coastal Zone*. "INRAM". Final Report. Brussels : Belgian Science Policy Office 2013 – 114 p. (Research Programme Science for a Sustainable Development)
- Claessens M, Vanhaecke L, Wille K, Janssen C R (2013): Emerging contaminants in Belgian marine waters: Single toxicant and mixture risks of pharmaceuticals. Marine Pollution Bulletin 71, 41-50.
- Dalla Bona M, Di Leva V, De Liguoro M (2014): The sensitivity of Daphnia magna and Daphnia curvirostris to 10 veterinary antibacterials and to some of their binary mixtures. Chemosphere 115, 67-74.
- Dalla Bona M, Zounková R, Merlanti R, Blaha L, De Liguoro M (2015): Effects of enrofloxacin, ciprofloxacin, and trimethoprim on two generations of Daphnia magna. Ecotoxicology and environmental safety 113, 152-158.
- De Liguoro M, Di Leva V, Dalla Bona M, Merlanti R, Caporale G, Radaelli G (2012): Sublethal effects of trimethoprim on four freshwater organisms. Ecotoxicology and Environmental Safety 82, 114-121.
- EC (2011): Technical Guidance For Deriving Environmental Quality Standards. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance Document No. 27. Europäische Kommission (EC).
- Eguchi K, Nagase H, Ozawa M, Endoh Y S, Goto K, Hirata K, Miyamoto K, Yoshimura H (2004): Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57:1733-1738.

Fass-Datenbank: http://www.fass.se/LIF/home/index.jsp. Letzter Zugriff 18.12.2015

Franklin T J, Snow G A (2005): Biochemistry and molecular biology of antimicrobial drug action. Springer Science & Business Media, AstraZeneca, Alderley Park, Macclesfield, Cheshire, England (UK).

- Gilberg und Hamberger (2011), A Study on the Toxicity to the Early-Life Stages of Zebrafish. Study Number (ECT): 11AZ4FV; GLP-Studie; zitiert in Straub 2013; Originalbericht wurde von Hoffmann-La Roche zur Verfügung gestellt.
- Guo J, Selby K, Boxall ABA (2016). Comparing the sensitivity of chlorophytes, cyanobacteria, and diatoms to major-use antibiotics. Environ Toxicol Chem. DOI: 10.1002/etc.3430.
- Halling-Sørensen B, Holten-Lützhoft H C, Andersen H R, Ingerslev F (2000): Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciptofloxacin. Journal of Antimicrobial Chemotherapie 46, S1:53-58.
- Hoffmann F-La Roche Ltd (2008): Safety Data Sheet for Trimethoprim, (19.06.2008)
- Holten- Lützhøft, Halling-Sorensen, Jorgensen S E (1999): Algal Toxicity of Antibacterial Agents Applied in Danish Fish Farming. Arch. Environ. Contam. Toxicol. 36: 1-6.
- Kim Y, Choi K, Jung J, Park S, Kim P-G, Park J (2007): Aquatic toxicity of acetaminophen, carbamazepine, cimetitidine, diltiazem and six major sulfonamides. Environment International 33:370-375.
- Klimisch H J, Andreae M, Tillmann U (1997): A Systematic Approach for Evaluating the Quality of Experimental Toxicological and Ecotoxicological Data. Regulatory Toxicology and Pharmacology 25:1-5.
- Kolar B, Arnuš L, Jeretin B, Gutmaher A, Drobne D, Durjava M K (2014): The toxic effect of oxytetracycline and trimethoprim in the aquatic environment. Chemosphere 115, 75-80.
- Lam MW, Young CJ, Brain RA, Johnson DJ, Hanson MA, Wilson CJ, Richards SM, Solomon KR, Mabury SA (2004). Aquatic persistence of eight pharmaceuticals in a microcosm study. Environ Sci Technol 23, 1431-1440.
- Láng J, Kohidai L (2012): Effects of the aquatic contaminant human pharmaceuticals and their mixtures on the proliferation and migratory responses of the bioindicator freshwater ciliate Tetrahymena. Chemosphere 89, 592-601.
- Li M-H (2013): Acute toxicity of 30 pharmaceutically active compounds to freshwater planarians, Dugesia japonica. Toxicological & Environmental Chemistry 95, 1157-1170.
- Liguoro M D, Fioretto B, Poltronieri C, Gallina G (2009): The toxicity of sulfamethazine to daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim. Chemosphere 75:1519-1524.
- Liu F, Ying G G, Tao R, Zhao J L, Yang J F, Zhao L F (2009): Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environmental Pollution 157, 1636-1642.
- Minguez L, Pedelucq J, Farcy E, Ballandonne C, Budzinski H, Halm-Lemeille M-P (2014): Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ Sci Pollut Res, 1-10.
- Moermond C T A, Kase R, Korkaric M, Ågerstrand M (2016): CRED: Criteria for reporting and evaluating ecotoxicity data. Environmental Toxicology and Chemistry 35, 1297-1309.

OECD Toolbox 1.1 - http://www.oecd.org/

- Oggier (2011), Growth inhibition test with Lemna minor. BMG Study No.: A11-00372; GLP-Studie; zitiert in Straub 2013; Originalbericht wurde von Hoffmann-La Roche zur Verfügung gestellt.
- Park S und Choi K (2008): Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 17:526-538. DOI 10.1007/s10646-008-0209-x.
- Parolini M, Pedriali A, Binelli A (2013): Application of a biomarker response index for ranking the toxicity of five pharmaceutical and personal care products (PPCPs) to the bivalve Dreissena polymorpha. Archives of Environmental Contamination and Toxicology 64, 439-447.

- Quinn B, Gagné F, Blaise C (2008): An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata. Sciene of the total environment 389:306-314.
- Rhee J-S, Jeong C-B, Kim B-M, Lee J-S (2012): P-glycoprotein (P-gp) in the monogonont rotifer, Brachionus koreanus: Molecular characterization and expression in response to pharmaceuticals. Aquatic toxicology 114, 104-118.
- Richards S M, Cole S (2006): A toxicity and hazard assessment of fourteen pharmaceuticals to *Xenopus laevis* larvae. Ecotoxicology 15:647-656. DOI 10.1007/s10646-006-0102-4.
- Santos LH M L M, Araújoa A N, Fachinia A, Pena A, Delerue-Matos C,. Montenegro M C B S M (2010): Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials 175:45–95.
- Straub J O (2013): An environmental risk assessment for human-use trimethoprim in European surface waters. Antibiotics 2, 115-162.
- UN (2015): Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 6th revised edition ed. United Nations, New York.
- US EPA (2008): Estimation Programs Interface Suite[™] for Microsoft[®] Windows, v 4.0. United States Environmental Protection Agency, Washington, DC, USA.
- US EPA (2012): Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11. United States Environmental Protection Agency, Washington, DC, USA.
- Watson ID, Stewart MJ (1986): Trimethoprim: prediction of serum concentrations from saliva measurements. Eur J Clin Pharm 30:459–461.
- Yang L-H, Ying G-G, SU H-C, Jennifer L S, Adams M S, Binet M T (2008): Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga *Pseudokirchneriella subcapitata*. Environmental Toxicology and Chemistry, Vol. 27, No. 5:1201–1208.