

Schweizerisches Zentrum für angewandte Ökotoxikologie Centre Suisse d'écotoxicologie appliquée Eawag-EPFL

EQS - Vorschlag des Oekotoxzentrums für:

Terbuthylazin

Ersterstellung:17.07.2012 (Stand der Datenrecherche)1. Aktualisierung:03.08.2016 (Stand der Datenrecherche)

1 Qualitätskriterien-Vorschläge

CQK (AA-EQS):	0.22 µg/L (unverändert)
AQK (MAC-EQS):	1.28 µg/L (unverändert)

Das chronische Qualitätskriterium (CQK \triangleq AA-EQS) und das akute Qualitätskriterium (AQK \triangleq MAC-EQS) wurden nach dem TGD for EQS der Europäischen Kommission (EC, 2011) hergeleitet. Damit die Dossiers international vergleichbar sind, wird im Weiteren die Terminologie des TGD verwendet.

2 Physikochemische Parameter

In Tabelle 1 wird die Identität wie auch chemische und physikalische Parameter für Terbuthylazin angegeben. Wo bekannt, wird mit (exp) spezifiziert, dass es sich um experimentell erhobene Daten handelt, während es sich bei mit (est) gekennzeichneten Daten um abgeschätzte Werte handelt.

Eigenschaften	Wert	Referenz
IUPAC Name	N ² - <i>tert</i> -butyl-6-chloro-N ⁴ -ethyl-1,3,5-triazine-2,4-diamine	Tomlin 2009
Chemische Gruppe	Chlorotriazin	US EPA 1995
CAS-Nummer	5915-41-3	Tomlin 2009
EINECS-Nummer	227-637-9	Tomlin 2009
Summenformel	C ₉ H ₁₆ CIN ₅	Tomlin 2009
Strukturformel	H ₁ C NH N H ₂ C CH ₁ NH CH ₁	EPI 2011
SMILES-code	n(c(nc(n1)NC(C)(C)C)NCC)c1CL	EPI 2011
Molekulargewicht (g·mol ⁻¹)	229.7	Tomlin 2009
Schmelzpunkt (°C)	175.5°C (exp)	EC 2007a
	177 - 179°C (exp)	WHO 2003
Siedepunkt (°C)	Zersetzt sich vor Siedepunkt (224 – 230°C) (exp) 321.23°C (est)	EC 2007a EPI 2011
Dampfdruck (Pa)	9 · 10 ⁻⁵ (25°C) (exp); 1.52 · 10 ⁻⁴ (22°C) (exp)	EC 2007a
	$1.5 \cdot 10^{-4} (20^{\circ} \text{C}) (\text{exp})$	WHO 2003
Henry-Konstante (Pa⋅m ³ ⋅mol ⁻¹)	2.3 · 10 ⁻³ (25°C) (exp); 4.18 · 10 ⁻³ (20°C) (exp) 3.77 · 10 ⁻³ (25°C) (exp)	EC 2007a EPI 2011
Wasserlöslichkeit (g·L ⁻¹)	9 · 10 ⁻³ (25°C, pH 7.4) (exp); 6.64 · 10 ⁻³ (20°C, pH 7) (exp) 8.5 · 10 ⁻³ (20°C) (exp)	EC 2007a WHO 2003
Dissoziationskonstante (pK ₂)	1.95 und 1.84 (20°C) (exp)	EC 2007a
(1. 4)	$1.9 \pm 0.1 (21^{\circ}C) (exp)$	US EPA 1995
n-Octanol/Wasser	3.4 (25°C) (exp)	Tomlin 2009
Verteilungskoeffizient (log Kow)	3.03 (exp)	WHO 2003
Sediment/Wasser	Es konnte nur ein log Koc recherchiert werden:	
Verteilungskoeffizient (log Koc	2.32 (exp)	EPI 2011

 Tabelle 1
 Geforderte Angaben nach dem TGD for EQS (EC 2011), zusätzliche Angaben in kursiv.

oder log K_p)		
Hydrolysestabilität	205 und > 365 (25°C, pH 7) (exp)	EC 2007a
(Halbwertszeit in Tagen)	> 200 Tage (pH 7) (est)	WHO 2003
Photostabilität (Halbwertszeit)	29.5 Tage (40°N, Sommer) (exp)	EC 2007a
	3 Monate (natürliches Sonnenlicht); 39 Stunden (volle	WHO 2003
	Mittagssonne) (exp)	

3 Allgemeines

Anwendung:

Als Herbizid

Terbuthylazin dient zur Bekämpfung von Unkraut und ist besonders effektiv gegen einjährige Dikotyle (WHO 2003). In Europa wird das Herbizid hauptsächlich im Mais- und Hirseanbau verwendet. Weitere Verwendungen finden sich im Anbau von Wein, Obst, Zitrusfrüchten, Kaffee, Palmöl, Kakao, Oliven, Kartoffeln, Bohnen, Erbsen, Zuckerrohr, Gummi und in Aufforstungen und Neubepflanzungen. Das Herbizid wird hauptsächlich durch die Wurzeln aufgenommen. Es kann im Vor- und Nachauflauf zur Unkrautkontrolle angewendet werden (Tomlin 2009).

Als Biozid

Terbuthylazin dient gemäss der Europäischen Kommission (EC 2007b und EC 1998) als Biozid der Produktgruppen 2 (Desinfektionsmittel und andere Biozidprodukte), 11 (Konservierungsmittel in Flüssigkühl- und Aufbereitungsystemen), 12 (Schleimbekämpfungsmittel) zur Bekämpfung von schleimbildenden Algen, Pilzen und Bakterien.

- <u>Wirkungsweise:</u> Terbuthylazin hemmt die Photosynthese durch die Blockierung des Elektronentransports im Photosystem II (Tomlin 2009).
- <u>Analytik:</u> Mit GC-MS/MS konnte eine Nachweisgrenze von 31 ng L⁻¹ erreicht werden (Penetra *et al.* 2010). Mit on-line SPE-LC-MS/MS lag die erreichte Nachweisgrenze bei 0.068 ng L⁻¹ und die Quantifizierungsgrenze bei 0.18 ng L⁻¹ (Kampioti *et al.* 2005).

Stabilität und

Metaboliten:

Gemäss dem Draft Assessment Report (DAR) der Pflanzenschutzmittelzulassung (EC 2007a) ist Terbuthylazin unter den Testbedingungen von akuten Ökotoxizitätstests stabil (vergleiche dazu die im DAR zitierten Studien von Migchielsen (2002a), Grade (1993b), Swarbrick und Maynard (2002)).

Für alle Kurzzeitexpositionen (gewöhnlich bis 96h) sowie für alle Tests in denen die Testlösungen regelmässig erneuert wurden, kann daher davon ausgegangen werden, dass die Testkonzentrationen stabil waren. Die analytische Validierung der Testkonzentrationen ist somit nicht als zwingendes Kriterium für die Validität einer akuten Studie anzusehen. Die grundsätzliche Stabilität der Testsubstanz ist nur ein Einflussfaktor auf die tatsächliche Testkonzentration, wenn auch eine sehr wichtiger. Andere Einflussfaktoren sind die Löslichkeit der Testsubstanz im Testmedium und das korrekte Einwiegen der Testsubstanz. Während sich die Löslichkeit anhand der Wasserlöslichkeit und der eingesetzten Testkonzentrationen plausibilisieren lässt, kann es beim Einwiegen zu nichtsystematischen Unterschieden kommen, die anhand der Angaben im jeweiligen Testbericht nicht ersichtlich sind. Daher werden alle Werte, die auf nominalen Konzentrationen beruhen, gekennzeichnet. Bei deutlichen Unterschieden (Unterschied grösser als Faktor 10) zwischen Toxizitätswerten, die auf nominalen Konzentrationen beruhen, und analytisch validierten Werten, sollen daher die analytisch validierten bevorzugt werden.

Hoberg (1993), zitiert in EC 2007a, beobachtete eine Reduktion der Testkonzentrationen in einem statischen Test von ungefähr 50% über einen Zeitraum von 14 Tagen. Für chronische Ökotoxizitätstests sollte daher eine chemische Analyse der Testkonzentrationen vorliegen, falls die Testlösungen nicht regelmässig erneuert wurden.

Die wichtigsten Metaboliten im Wasser sind Desethyl-Terbuthylazin und Hydroxy-Terbuthylazin (EC 2007a). Die wichtigsten Metaboliten/Metabolitenrückstände in Sedimenten sind Desethyl-Terbuthylazin, Hydroxy-Terbuthylazin und Terbutryn (EC 2007a).

	nach derselben M	ethode) aufgelistet.	
Land	AA-EQS [µg/L]	MAC-EQS [µg/L]	Quelle
Doutochland	0.5		Oberflächengewässerverordnung; Anlage
Deutschland	0.5		5; Bundesgesetzblatt Teil I Nr. 37, 2011
Niederlande	0.40	4.0	Niederlande 2010 und pers. Komm. C. E.
Niederlande	0.19	1.3	Smit, RIVM, Niederlande
Slowenien	0.53	5.3	Slowenien (2010)

In untenstehender Tabelle sind existierende EQS (oder vergleichbare Werte

Existierende EQS:

Für Desethyl-Terbuthylazin schlagen die Niederlande ein dem AA-EQS vergleichbaren MTR von 2.4 ng/L vor (RIVM Datenbank).

4 Effektdatensammlung

Für Terbuthylazin (TBA) sind Effektdaten zu Cyanobakterien, Algen, Wasserpflanzen, Krebstieren, Insekten und Fischen vorhanden (Tabelle 2). Effektdaten aus Toxizitätstests mit Formulierungen wurden als nicht relevant eingestuft, da der Einfluss von Hilfsstoffen auf die Toxizität von TBA unbekannt ist. Für marine Arten konnten nur sehr wenige Effektdaten gefunden werden. Literaturdaten, die nicht die Anforderungen nach TGD for EQS (EC 2011) bezüglich ihrer Relevanz und Zuverlässigkeit (Validität) erfüllen, wurden in grau dargestellt. Sie wurden für die Ableitung der EQS nicht verwendet, sollen aber als zusätzliche Information genannt werden. Eine Bewertung der Validität wurde nach den Klimisch-Kriterien (Klimisch et al. 1997) durchgeführt, bzw. nach den CRED-Kriterien für Studien die im Zuge der Aktualisierung herangezogen wurden (Moermond et al. 2016). Für Validität wird nach der CRED-Methode Verlässlichkeit (R; Engl. Reliability) und Relevanz (C; Engl. Relevance) bewertet. Beide werden in Übereinstimmung mit der Klimisch Methode in folgende Kategorien eingeteilt: R1/C1= Zuverlässig/Relevant ohne Einschränkung; R2/C2 = Zuverlässig/Relevant mit Einschränkung; R3/C3 = nicht Zuverlässig/Relevant; R4/C4 = nicht bewertbar. Eine Neubewertung der vor der Aktualisierung aufgeführten Studien fand nicht statt. Eine Bewertung der Verlässlichkeit wurde nicht durchgeführt, wenn eine Studie als nicht relevant (C3) bewertet wurde.

Tabelle 2 Effektdatensammlung für Terbuthylazin. Werte aus Studien, die durch die EU oder US EPA überprüft und für die Verwendung in der Grenzwertregulierung akzeptiert wurden, werden gemäss TGD for EQS als *"face value"* übernommen und mit Klimisch 1 bewertet. Gemäss TGD for EQS werden bei den Biotests mit Pflanzen die Werte zur Wachstumsrate gegenüber denen zum Biomassezuwachs bevorzugt für die EQS Herleitung verwendet (welche daher in grau dargestellt sind). Zusätzlich wurden auch noch Studien zur Reproduktion von Algen (Wachstumshemmung in synchronisierten Kulturen basierend auf direkt bestimmter Zellzahl) berücksichtigt, selbst wenn sie eine kürzere Testdauer als 72 h hatten, da damit im Prinzip dieselben Prozesse getestet werden.

(<u>Testtyp</u>: **S** = statisch, **R** = semi-statisch, **F** = Durchfluss; <u>Chemische Analyse</u>: **n** = nominal; **ana** = analytische bestimmte Konzentration; **n-ana** = nominal, Überprüfung der Testkonzentration hat stattgefunden und Abweichungen im Toleranzbereich (80 – 120% der nominalen Konzentrationen); **est** = Wert geschätzt aus Grafik; **Form.** = Formulierung; **kA** = keine Angaben).

		EFFE	TDAT	ensa	MMLUN	IG					
Sammel- bezeichnung	Organismus	Endpunkt (Messparameter)	Dauer	Dimension	Parameter	Operator	Wert [µg/L]	Chemische Analyse (Salinität)	Notiz	Validität	Quelle
		ak	ute Dat	en lir	nnisch						
Cyanobakterien	Anabaena flos-aquae	Wachstumsrate (Zellzahl)	120	h	EC50	=	52	ana	S	1	Migchielsen 2002a, zitiert in EC 2007a
Cyanobakterien	Anabaena flos-aquae	Biomasse (Zellzahl)	120	h	EC50	=	18	ana	S	1	Migchielsen 2002a, zitiert in EC 2007a
Cyanobakterien	Anabaena flos-aquae	kA	120	h	EC50	=	99	kA	S	4	Toxicon Env. Sciences 1995, zitiert in OPP 2000
Cyanobakterien	Anabaena variabilis	Wachstumsrate (Chlorophyllkonzentration)	24	h	EC50	=	1034	nom	S	3	Hawxby et al. 1977
Cyanobakterien	Anabaena variabilis	Photosyntheserate (polarografisch)	24	h	EC50	=	80	nom	S	3	Hawxby et al. 1977
Cyanobakterien	Lyngbya sp.	Wachstumsrate (Chlorophyllkonzentration)	24	h	EC50	<	23	nom	S	3	Hawxby et al. 1977
Cyanobakterien	Lyngbya sp.	Photosyntheserate (polarografisch)	24	h	EC50	<	23	nom	S	3	Hawxby et al. 1977
Cyanobakterien	Microcystis aeruginosa	Wachstumsrate (Zellzahl)	120	h	EC50	=	102	ana	S	1	Migchielsen 2002b, zitiert in EC 2007a
Cyanobakterien	Microcystis aeruginosa	Biomasse (Zellzahl)	120	h	EC50	=	16	ana	S	1	Migchielsen 2002b, zitiert in EC 2007a
Cyanobakterien	Microcystis aeruginosa	Biomasse (Zellzahl)	96	h	EC50	=	15	nom	B, S	1	Grade 1993b, zitiert in EC 2007a
Cyanobakterien	Nostoc muscorum	Wachstumsrate (Chlorophyllkonzentration)	10	d	EC50	=	60	ana	Form, S	2	Shabana und Abou-Waly 1995
Algen	Chlorella pyrenoidosa	Wachstumsrate (Chlorophyllkonzentration)	24	h	EC50	=	23	nom	S	3	Hawxby et al. 1977
Algen	Chlorella pyrenoidosa	Photosyntheserate (polarografisch)	24	h	EC50	=	92	nom	S	3	Hawxby et al. 1977
Algen	Chlorococcum sp.	Wachstumsrate (Chlorophyllkonzentration)	24	h	EC50	=	666	nom	S	3	Hawxby et al. 1977
Algen	Chlorococcum sp.	Photosyntheserate (polarografisch)	24	h	EC50	=	92	nom	S	3	Hawxby et al. 1977
Algen	Navicula pelliculosa	kA	120	h	EC50	=	11	kA	S	4	Toxicon Env. Sciences, 1996, zitiert in OPP 2000
Algen	Navicula pelliculosa	Biomasse (Zellzahl)	96	h	EC50	^	25	ana	S	1	Grade (1993c), zitiert in EC 2007a
Algen	Raphidocelis subcapitata (Selenastrum capricornutum)	kA	120	h	EC50	=	3.2	kA	S	4	Toxicon Env. Sciences, 1996, zitiert in OPP 2000
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Photosyntheseinhibition (Fluorometrisch)	2	h	EC50	=	11.1	kA	S	R4, C2	Tang et al. 2014
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate (Optische Dichte)	24	h	EC50	=	19.7	kA	S	R4, C2	Tang et al. 2014
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Biomasse (Zellzahl)	72	h	EC50	=	12	ana	S	1	Kelly 1996, zitiert in EC 2007a

	EFFEKTDATENSAMMLUNG												
Sammel- bezeichnung	Organismus	Endpunkt (Messparameter)	Dauer	Dimension	Parameter	Operator	Wert [µg/L]	Chemische Analyse (Salinität)	Notiz	Validität	Quelle		
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Biomasse (Zellzahl)	72	h	EC50	=	17	nom	S	2	Okamura <i>et al.</i> 2000		
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Biomasse (Zellzahl)	72	h	EC50	=	9	nom	s	2	Sbrilli <i>et al.</i> 2005		
			geo	m. Mit	telwert	=	12.2						
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate (Zellzahl)	72	h	EC50	=	28	ana	S	1	Kelly 1996, zitiert in EC 2007a		
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate (Zellzahl)	72	h	EC50	=	36	nom	s	2	Okamura <i>et al.</i> 2000		
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate (Optische Dichte)	72	h	EC50	=	24	nom	s	2	Pérez et al. 2011		
			geo	m. Mit	telwert	=	28.9						
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate (Chlorophyllfluoreszenz)	48 ^c	h	EC50	=	55	nom	S	2	Cedergreen und Streibig 2005b		
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate (Chlorophyllfluoreszenz)	48	h	EC50	=	595	nom	S	3	Munkegaard et al. 2008		
Algen	Scenedesmus vacuolatus	Reproduktion in synchronisierten Kulturen	24 ^d	h	EC50	=	15.9	ana	S	2	Faust <i>et al</i> . 2001		
Algen	Scenedesmus subspicatus	Biomasse (Chlorophyllfluoreszenz)	72	h	EC50	=	16	nom	s	2	Nitschke <i>et al.</i> 1999		
Algen	Scenedesmus subspicatus	Biomasse (Zellzahl)	72	h	EC50	=	16	ana	B, S, E	3	Grade 1993a, zitiert in EC 2007a		
Höhere /asserpflanzen	Lemna gibba	Biomasse (Trockengewicht)	14	d	EC50	=	17	ana	s	1	Hoberg 1993, zitiert in EC 2007a		
Höhere /asserpflanzen	Lemna gibba	Biomasse (Frondzahl)	14	d	EC50	=	19	ana	s	1	Hoberg 1993, zitiert in EC 2007a		
Höhere Vasserpflanzen	Lemna gibba	kA	14	d	EC50	=	16	kA	S	4	Toxicon Env. Sciences, Florida (1996), zitiert in (OPP 2000)		
Höhere /asserpflanzen	Lemna gibba	Biomasse (Frondzahl)	7	d	EC50	=	12.8	ana	R	1	Dengler 2001, zitiert in EC 2007a		
Höhere Vasserpflanzen	Lemna gibba	Biomasse (Nassgewicht)	7	d	EC50	=	13.3	ana	R	1	Dengler 2001, zitiert in EC 2007a		
Höhere Vasserpflanzen	Lemna minor	Wachstumsrate (Nassgewicht)	9	d	EC50 (est)	=	115	nom	R	2	Cedergreen und Streibig 2005a		
Höhere Vasserpflanzen	Lemna minor	Wachstumsrate (Trockengewicht)	9	d	EC50 (est)	=	125	nom	R	2	Cedergreen und Streibig 2005a		
Höhere Vasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	9	d	EC50 (est)	=	170	nom	R	2	Cedergreen und Streibig 2005a		
Höhere Vasserpflanzen	Lemna minor	Wachstumsrate (Frondzahl)	9	d	EC50 (est)	=	300	nom	R	2	Cedergreen und Streibig 2005a		
Höhere Vasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	7	d	EC50	=	157	nom	s	2	Munkegaard <i>et al</i> . 2008		
Höhere Vasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	7	d	EC50	=	105	nom	S	2	Cedergreen und Streibig 2005b		
			geo	m. Mit	telwert	=	128.4						
Höhere Vasserpflanzen	Lemna minor	Biomasse (Frondzahl)	7	d	EC50	=	230	nom	S	2	Nitschke <i>et al</i> . 1999		
Höhere Vasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	7	d	EC50	=	167.5	kA	kA	3	Cedergreen <i>et al.</i> 2004		
Höhere Nasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	96°	h	EC50	=	183	nom	S	2	Cedergreen et al. 2005		

		EFFE	KTDAT	ENSA	MMLUN	IG					
Sammel- bezeichnung	Organismus	Endpunkt (Messparameter)	Dauer	Dimension	Parameter	Operator	Wert [µg/L]	Chemische Analyse (Salinität)	Notiz	Validität	Quelle
Höhere Wasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	96°	h	EC50	=	32.4	nom	S	2	Cedergreen et al. 2005
Höhere Wasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	96°	h	EC50	=	148	nom	S	2	Cedergreen et al. 2005
			geo	m. Mit	telwert	=	95.7				
Krebstiere	Daphnia magna	kA	96	h	NOEC	=	9800	kA	S	4	Ciba Geigy 1983, zitiert in OPP 2000
Krebstiere	Daphnia magna	kA	96	h	EC50	=	50900	kA	S	4	Ciba Geigy 1983, zitiert in OPP 2000
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	=	50900	kA	kA	1	US EPA 1995
Krebstiere	Daphnia magna	Immobilisierung	48	h	NOEC	>	5000	nom	S	2	Marchini <i>et al.</i> 1988
Krebstiere	Daphnia magna	Immobilisierung	48	h	NOEC	=	1000	ana	S, O	3	Douglas <i>et al.</i> 1988c, zitiert in EC 2007a
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	=	11000	ana	S, O	3	Douglas <i>et al.</i> 1988c, zitiert in EC 2007a
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	>	69300	ana	S, O	3	Van der Kolk 1996, zitiert in EC 2007a
Krebstiere	Daphnia magna	kA	48	h	NOEC	=	10000	kA	S	4	Union Carbide Corp. Env. Services 1977, zitiert in OPP 2000
Krebstiere	Daphnia magna	kA	48	h	EC50	=	21200	kA	S	4	Union Carbide Corp. Env. Services 1977, zitiert in OPP 2000
Insekten	Chironomus riparius	Schwimmverhalten und Enzymaktivität	96	h	EC50	^	200	ana	S	C3	Pérez et al. 2013b
Fische	Carassius auratus	Mortalität	96	h	LC50	=	9500	kA	kA	4	Tomlin 2002
Fische	Carassius carassius	Mortalität	96	h	LC50	=	66000	nom	kA, O	3	Sachsse 1972, zitiert in EC 2007a
Fische	Carassius carassius	Mortalität	48	h	LC50	=	90000	nom	S	3	Bathe et al. 1975
Fische	Carassius carassius	Mortalität	96	h	LC50	=	7000	kA	kA	4	Tomlin 2002
Fische	Cyprinus carpio	Mortalität	96	h	LC50	>	5700	ana	S	1	Wallace and Woodyer 2002, zitiert in EC 2007a
Fische	Cyprinus carpio	Mortalität	96	h	NOEC	<	5700	ana	S	1	Wallace and Woodyer 2002, zitiert in EC 2007a
Fische	Danio rerio	Entwicklung und Schlupferfolg	96	h	LOEC	>	16200	ana	R	R2, C1	Pérez et al. 2013a
Fische	Danio rerio	Schwimmverhalten und Enzymaktivität	96	h	EC50	=	13000	ana	R	R2, C3	Pérez et al. 2013a
Fische	lctalurus ameiurus	Mortalität	96	h	LC50 (est)	=	7000	nom	kA, O	3	Sachsse 1972, zitiert in EC 2007a
Fische	lctalurus melas	Mortalität	48	h	LC50	=	8000	nom	S	3	Bathe et al. 1975
Fische	Lebistes reticulatus	Mortalität	96	h	LC50	=	1600	nom	kA, O	3	Sachsse 1972, zitiert in EC 2007a
Fische	Lebistes reticulatus	Mortalität	48	h	LC50	=	10000	nom	S	3	Bathe et al. 1975
Fische	Lepomis macrochirus	Mortalität	96	h	LC50	=	6800	ana	R	1	Douglas <i>et al</i> . 1988b, zitiert in EC 2007a

		EFFER	TDAT	ENSA		G					
Sammel- bezeichnung	Organismus	Endpunkt (Messparameter)	Dauer	Dimension	Parameter	Operator	Wert [µg/L]	Chemische Analyse (Salinität)	Notiz	Validität	Quelle
Fische	Lepomis macrochirus	Mortalität	96	h	LC50	=	7500	kA	kA	1	US EPA 1995
		geom. Mittelwert	96	h	LC50	=	7141				
Fische	Lepomis macrochirus	Mortalität	96	h	LC50	=	52000	nom	kA, O	3	Sachsse 1972, zitiert in EC 2007a
Fische	Lepomis macrochirus	kA	96	h	EC50	=	7500	kA	S	4	Ciba Geigy 1983, zitiert in OPP 2000
Fische	Lepomis macrochirus	Mortalität	96	h	NOEC	=	3200	ana	R	1	Douglas <i>et al.</i> 1988b, zitiert in EC 2007a
Fische	Lepomis macrochirus	kA	96	h	NOEC	=	5600	kA	S	4	Ciba Geigy 1983, zitiert in OPP 2000
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	=	2200	n-ana	S	1	Swarbrick and Maynard 2002, zitiert in EC 2007a
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	=	3400	kA	kA	1	US EPA 1995
Fische	Oncorhynchus mykiss	Mortalität	96	h	geom. Mittel	=	2735				
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	=	2400	ana	R, H	3	Douglas <i>et al.</i> 1988a, zitiert in EC 2007a
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	=	4600	nom	kA, O	3	Sachsse 1972, zitiert in EC 2007a
Fische	Oncorhynchus mykiss	kA	96	h	EC50	=	3400	kA	S	4	Ciba Geigy 1983, zitiert in OPP 2000
Fische	Oncorhynchus mykiss	Mortalität	96	h	NOEC	<	560	n-ana	S	1	Swarbrick and Maynard 2002, zitiert in EC 2007a
Fische	Oncorhynchus mykiss	Mortalität	96	h	NOEC	=	1800	ana	R	1	Douglas <i>et al.</i> 1988a, zitiert EC 2007a
Fische	Oncorhynchus mykiss	kA	96	h	NOEC	=	1900	kA	S	4	Ciba Geigy 1983, zitiert in OPP 2000
Fische	Oncorhynchus mykiss	Mortalität	48	h	LC50	=	9000	nom	S	3	Bathe et al. 1975
		a	kute D	aten r	marin						-
Algen	Skeletonema costatum	kA	120	h	EC50	=	31.0	kA	s	4	Toxicon Env. Sciences 1996, zitiert in OPP 2000
Krebstiere	Americamysis bahia	kA	48	h	EC50	=	109000	kA	S	4	Env. Science & Technology Inc. 1988, zitiert in OPP 2000
Krebstiere	Americamysis bahia	Mortalität	96	h	LC50	=	167	kA	S	4	Wert gelistet in der PPDB
Krebstiere	Pandalus spp.	kA	kA	kA	EC50	=	109.7	kA	kA	4	US EPA 1995
		chronische und	l subch	ronis	che Date	n lim	nisch				
Cyanobakterien	Anabaena flos-aquae	Wachstumsrate (Zellzahl)	120	h	NOEC	=	20	ana	s	1	Migchielsen 2002a, zitiert in EC 2007a
Cyanobakterien	Anabaena flos-aquae	Biomasse (Zellzahl)	120	h	NOEC	=	8.9	ana	s	1	Migchielsen 2002a, zitiert in EC 2007a
Cyanobakterien	Anabaena flos-aquae	kA	120	h	NOEC	=	17	kA	S	4	Toxicon Env. Sciences 1995, zitiert in OPP 2000
Cyanobakterien	Anabaena variabilis	Wachstumsrate (Chlorophyllkonzentration)	24	h	NOEC	<	230	nom	S	3	Hawxby et al. 1977
Cyanobakterien	Lyngbya sp.	Wachstumsrate (Chlorophyllkonzentration)	24	h	NOEC	<	23	nom	S	3	Hawxby et al. 1977

		EFFE	KTDAT	ENS/	MMLUN	G					
Sammel- bezeichnung	Organismus	Endpunkt (Messparameter)	Dauer	Dimension	Parameter	Operator	Wert [µg/L]	Chemische Analyse (Salinität)	Notiz	Validität	Quelle
Cyanobakterien	Microcystis aeruginosa	Biomasse (Zellzahl)	120	h	NOEC	=	4.4	ana	s	1	Migchielsen 2002b, zitiert in EC 2007a
Cyanobakterien	Microcystis aeruginosa	Wachstumsrate (Zelizahi)	120	h	NOEC	=	39.6	ana	s	1	Migchielsen 2002b, zitiert in EC 2007a
Cyanobakterien	Microcystis aeruginosa	Biomasse (Zellzahl)	96	h	NOEC	=	11	ana	s	1	Grade 1993b, zitiert in EC 2007a
Algen	Asterionella formosa	Photosynthesehemmung	80	min	LOEC	>	46000	nom	S	2	Choi et al. 2012
Algen	Chlamydomonas reinhardtii	Photosynthesehemmung	80	min	LOEC	<	92	nom	S	2	Choi <i>et al.</i> 2012
Algen	Chlorella pyrenoidosa	Wachstumsrate (Chlorophyllkonzentration)	24	h	NOEC	<	23	nom	S	3	Hawxby et al. 1977
Algen	Chloroccum sp.	Wachstumsrate (Chlorophyllkonzentration)	24	h	NOEC	=	23	nom	S	3	Hawxby et al. 1977
Algen	Cryptomonas erosa	Photosynthesehemmung	80	min	LOEC	>	46000	nom	S	2	Choi <i>et al.</i> 2012
Algen	Navicula pelliculosa	kA	120	h	NOEC	=	5.6	kA	S	4	Toxicon Env. Sciences 1996, zitiert in OPP 2000
Algen	Navicula pelliculosa	Biomasse (Zellzahl)	96	h	NOEC	=	10	ana	S	1	Grade 1993c, zitiert in EC 2007a
Algen	Navicula pelliculosa	Photosynthesehemmung	80	min	LOEC	>	46000	nom	S	2	Choi et al. 2012
Algen	Pseudokirchneriella subcapitata	kA	120	h	NOEC	=	0.6	kA	S	4	Toxicon Env. Sciences 1996, zitiert in OPP 2000
Algen	Pseudokirchneriella subcapitata	Biomasse (Zellzahl)	72	h	NOEC	=	1.2	ana	S	1	Kelly 1996, zitiert in EC 2007a
Algen	Pseudokirchneriella subcapitata	Biomasse (Zellzahl)	72	h	NOEC	=	2	nom	S	2	Sbrilli et al. 2005
Algen	Pseudokirchneriella subcapitata	Biomasse (Zellzahl)	72	h	geom. Mittel	=	1.5				
Algen	Pseudokirchneriella subcapitata	Wachstumsrate (Zellzahl)	72	h	NOEC	=	2.4	ana	s	1	Kelly 1996, zitiert in EC 2007a
Algen	Pseudokirchneriella subcapitata	Wachstumsrate (Optische Dichte)	72	h	NOEC (est)	=	2.5	nom	S	2	Pérez et al. 2011
		geom. Mittelweet	72	h		=	2.4				
Algen	Pseudokirchneriella subcapitata	Wachstumsrate (Chlorophyllfluoreszenz)	48	h	EC10	=	25	nom	C, S	2	Cedergreen und Streibig 2005b
Algen	Pseudokirchneriella subcapitata	Photosynthesehemmung	80	min	LOEC	<	92	nom	S	2	Choi et al. 2012
Algen	Scenedesmus obliquus	F684/F735 Fluoreszenzverhältnis	1	min	LOEC	=	50	ana	S	2	Eullaffroy und Vernet 2003
Algen	Scenedesmus obliquus	F684/F735 Fluoreszenzverhältnis	1	min	NOEC	<	17	ana	S	2	Eullaffroy und Vernet 2003
Algen	Scenedesmus subspicatus	Biomasse (Chlorophyllfluoreszenz)	72	h	EC10	=	7	ana	S	2	Nitschke et al. 1999
Algen	Scenedesmus subspicatus	Biomasse (Zellzahl)	72	h	NOEC	=	3.3	ana	S, E	3	Grade 1993a, zitiert in EC 2007a
Algen	Scenedesmus vacuolatus	Reproduktion in sychronisierten Kulturen	24	h	NOEC	=	2.2	ana	D, S	2	Faust <i>et al.</i> 2001
Algen	Scenedesmus vacuolatus	Biomasse (Zellzahl, mit synchronisierten Algenkulturen)	24	h	EC01	=	1.3	ana	S	2	Faust <i>et al.</i> 2001
Algen	Synura petersenii	Photosynthesehemmung	80	min	LOEC	<	92	nom	S	2	Choi et al. 2012

		EFFEI	KTDAT	ENSA	MMLUN	G					
Sammel- bezeichnung	Organismus	Endpunkt (Messparameter)	Dauer	Dimension	Parameter	Operator	Wert [µg/L]	Chemische Analyse (Salinität)	Notiz	Validität	Quelle
Höhere Wasserpflanzen	Callitriche platycarpa	Biomasse (Trockengewicht)	14	d	EC50	=	119	ana	R, K	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Callitriche platycarpa	Biomasse (Trockengewicht)	14	d	EC10	=	28	ana	R, K	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Ceratophyllum demersum	Biomasse (Trockengewicht)	14	d	EC50	=	196	ana	R, K	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Ceratophyllum demersum	Biomasse (Trockengewicht)	14	d	EC10	=	4	ana	R; K, L	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Ceratophyllum submersum	Biomasse (Trockengewicht)	14	d	EC50	=	69	ana	R, J	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Ceratophyllum submersum	Biomasse (Trockengewicht)	14	d	EC10	=	8	ana	R, J	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Ceratophyllum submersum	Biomasse (Trockengewicht)	14	d	EC50	=	17	ana	R, K	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Ceratophyllum submersum	Biomasse (Trockengewicht)	14	d	EC10	=	2	ana	R, K, L	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Elodea canadensis	Biomasse (Trockengewicht)	14	d	EC50	=	305	ana	R, J	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Elodea canadensis	Biomasse	14	d	EC10	=	64	ana	R, J	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Elodea canadensis	Biomasse (Trockengewicht)	14	d	EC50	=	98	ana	R, K	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Elodea canadensis	Biomasse	14	d	EC10	=	27	ana	R, K	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Lemna gibba	Chlorose	14	d	NOEC	=	5.5	ana	s	1	Hoberg 1993, zitiert in EC 2007a
Höhere Wasserpflanzen	Lemna gibba	Wurzelbildung	14	d	NOEC	=	18	ana	s	1	Hoberg 1993, zitiert in EC 2007a
Höhere Wasserpflanzen	Lemna gibba	Biomasse (Frondzahl)	14	d	NOEC	<	2.2	ana	S	1	Hoberg 1993 zitiert EC 2007a
Höhere Wasserpflanzen	Lemna gibba	kA	14	d	NOEC	=	2.1	kA	S	4	Toxicon Env. Sciences 1996, zitiert in OPP 2000
Höhere Wasserpflanzen	Lemna minor	Biomasse	14	d	EC10	=	6	ana	R, K	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Lemna minor	Biomasse (Trockengewicht)	14	d	EC50	=	40	ana	R, K	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Lemna minor	Biomasse	14	d	EC10	=	43	ana	R, J	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Lemna minor	Biomasse (Trockengewicht)	14	d	EC50	=	111	ana	R, J	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Lemna minor	Biomasse (Frondzahl)	7	d	EC10	=	110	nom	S	2	Nitschke <i>et al.</i> 1999
Höhere Wasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	96	h	EC10	=	44.8	nom	S	2	Cedergreen <i>et al</i> . 2005
Höhere Wasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	96	h	EC10	=	5.3	nom	S	2	Cedergreen <i>et al</i> . 2005
Höhere Wasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	96	h	EC10	=	44.6	nom	S	2	Cedergreen <i>et al</i> . 2005
Höhere Wasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	96	h	EC10	=	21.8	nom	S	2	Cedergreen <i>et al</i> . 2005
Höhere Wasserpflanzen	Lemna trisulca	Biomasse (Trockengewicht)	14	d	EC50	=	254	ana	R, J	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Lemna trisulca	Biomasse (Trockengewicht)	14	d	EC10	=	38	ana	R, J	3	Cedergreen et al. 2004

		EFFEI	TDAT	ENSA	MMLUN	G					
Sammel- bezeichnung	Organismus	Endpunkt (Messparameter)	Dauer	Dimension	Parameter	Operator	Wert [µg/L]	Chemische Analyse (Salinität)	Notiz	Validität	Quelle
Höhere Wasserpflanzen	Myriophyllum spicatum	Biomasse (Trockengewicht	14	d	EC50	=	55	ana	R, J	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Myriophyllum spicatum	Biomasse (Trockengewicht)	14	d	EC10	=	20	ana	R, J	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Potamogeton crispus	Biomasse (Trockengewicht	14	d	EC50	=	109	ana	R, J	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Potamogeton crispus	Biomasse (Trockengewicht)	14	d	EC10	=	63	ana	R, J	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Potamogeton crispus	Biomasse (Trockengewicht	14	d	EC50	=	199	ana	R, K	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Potamogeton crispus	Biomasse (Trockengewicht)	14	d	EC10	=	22	ana	R, K	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Spirodela polyrrhiza	Biomasse (Trockengewicht	14	d	EC50	=	228	ana	R, J	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Spirodela polyrrhiza	Biomasse (Trockengewicht)	14	d	EC10	=	16	ana	R, J	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Spirodela polyrrhiza	Biomasse (Trockengewicht	14	d	EC50	=	146	ana	R, K	3	Cedergreen et al. 2004
Höhere Wasserpflanzen	Spirodela polyrrhiza	Biomasse (Trockengewicht)	14	d	EC10	=	6	ana	R, K	3	Cedergreen et al. 2004
Krebstiere	Daphnia magna	Immobilisierung	21	d	NOEC	=	170	ana	R	1	Bell 1995, zitiert in EC 2007a
Krebstiere	Daphnia magna	Reproduktion	21	d	NOEC	=	19	ana	R	1	Shillabeer <i>et al.</i> 2002, zitiert in EC 2007a
Insekten	Chironomus riparius (Larve)	Schlupfrate	28	d	NOEC	=	3200	ana	S, O	3	Desmares-Koopmans 2001, zitiert in EC 2007a
Insekten	Chironomus riparius (Larve)	Schlupfzeit	28	d	NOEC	=	1800	ana	S, O	3	Desmares-Koopmans 2001, zitiert in EC 2007a
Insekten	Chironomus riparius (Larve)	Schlupfrate	27	d	NOEC	=	500	ana	s	1	Memmert 1998, zitiert in EC 2007a
Fische	Cyprinus carpio	Wachstum (Gewicht und Länge)	30	d	NOEC	=	160	ana	Form., F	C3	Štěpanova <i>et al.</i> 2012
Fische	Cyprinus carpio	Mortalität	30	d	LOEC	>	820	ana	Form., R	C3	Hostovsky <i>et al.</i> 2011
Fische	Danio rerio	Wachstum und Mortalität	28	d	LOEC	^	1000	ana	Form., F	C3	Plhalova et al. 2012
Fische	Danio rerio	Histopatologische Veränderungen im Lebergewebe	28	d	NOEC	=	150	ana	Form., F	C3	Plhalova <i>et al.</i> 2012
Fische	Danio rerio	Licht-Dunkel-Präferenz	28	d	NOEC	=	1	ana	F	2	Lorenz et al. 1996
Fische	Oncorhynchus mykiss (juvenil)	Wachstum (Länge)	21	d	NOEC	=	160	ana	R	1	Bell 1994a, zitiert in EC 2007a
Fische	Oncorhynchus mykiss (juvenil)	Wachstum (Gewicht)	21	d	NOEC	=	160	ana	R	1	Bell 1994a, zitiert in EC 2007a
Fische	Oncorhynchus mykiss (juvenil)	Wachstum (Gewicht)	21	d	NOEC	=	310	ana	F	1	Ritter 1990, zitiert in EC 2007a
		geom. Mittelwert	21	d	NOEC	=	222.7				
Fische	Oncorhynchus mykiss (ELS Test)	Wachstum (Länge)	90	d	NOEC	≥	90	ana	F	1	Rufli 1996, zitiert in EC 2007a
Fische	Oncorhynchus mykiss (ELS Test)	Wachstum (Trockengewicht)	90	d	NOEC	≥	90	ana	F	1	Rufli 1996, zitiert in EC 2007a
		chronische u	nd subc	hron	ische Dat	ten m	arin				

EFFEKTDATENSAMMLUNG												
Sammel- bezeichnung	Organismus	Endpunkt (Messparameter)	Dauer	Dimension	Parameter	Operator	Wert [µg/L]	Chemische Analyse (Salinität)	Notiz	Validität	Quelle	
Algen	Alexandrium lusitanicum	Photosynthese (bei 20°C standard Temp)	4-7	d	NOEC	<	25	kA (35 ppt)	s	R3, C2	Fiori et al. 2013	
Algen	Fibrocapsa japonica	Photosynthese (bei 20°C standard Temp)	1-20	d	NOEC	≤	1	kA (35 ppt)	S	R3, C2	Fiori et al. 2013	
Algen	Gonyaulax spinifera	Wachstumsrate (bei 20°C standard Temp)	8	d	NOEC	=	1	kA (35 ppt)	S	R3, C2	Fiori et al. 2013	
Algen	Gonyaulax spinifera	Photosynthese (bei 20°C standard Temp)	1-20	d	NOEC	<	1	kA (35 ppt)	S	R3, C2	Fiori et al. 2013	
Algen	Heterosigma akashiwo	Photosynthese (bei 20°C standard Temp)	4-7	d	NOEC	<	25	kA (35 ppt)	S	R3, C2	Fiori et al. 2013	
Algen	Lingulodinium polyedrum	Photosynthese (bei 20°C standard Temp)	1-20	d	NOEC	=	1	kA (35 ppt)	S	R3, C2	Fiori et al. 2013	
Algen	Prorocentrum minimum	Wachstumsrate (bei 15, 20 und 25°C)	4-20	d	LOEC	>	30	kA (35 ppt)	S	R3, C2	Fiori et al. 2013	
Algen	Prorocentrum minimum	Photosynthese (bei 15, 20 und-25°C)	4-7	d	NOEC	≥	30	kA (35 ppt)	S	R3, C2	Fiori et al. 2013	
Algen	Prorocentrum micans	Photosynthese (bei 20°C standard Temp)	4-7	d	NOEC	<	25	kA (35 ppt)	S	R3, C2	Fiori et al. 2013	
Algen	Prorocentrum reticulatum	Photosynthese (bei 20°C standard Temp)	4-7	d	NOEC	<	25	kA (35 ppt)	S	R3, C2	Fiori et al. 2013	
Algen	Scrippsiella trochoidea	Photosynthese (bei 20°C standard Temp)	4-7	d	NOEC	<	25	kA (35 ppt)	S	R3, C2	Fiori et al. 2013	
Algen	Skeletonema costatum	kA	120	h	NOEC	=	9.0	kA	S	4	Toxicon Env. Sciences 1996, zitiert in OPP 2000	
Algen	Skeletonema marinoi	Wachstumsrate (bei 15 und 20°C)	4-24	d	NOEC	=	10	kA (35 ppt)	S	R3, C2	Fiori and Pistocchi 2014	
Algen	Skeletonema marinoi	Wachstumsrate (bei 25°C)	4-24	d	NOEC	=	5	kA (35 ppt)	S	R3, C2	Fiori and Pistocchi 2014	
Krebstiere	Americamysis bahia	kA	48	h	NOEC	=	13000	kA	S	4	Env. Science & Technology Inc. 1988, zitiert in OPP 2000	
		Mikı	o- und	Meso	kosmen							
Algen	Chara vulgaris	Sauerstoffproduktion	90	d	EC50 (est)	=	3 < EC50 > 37	ana	s	3	Schilling et al. 1992	
Algen	Chara vulgaris	Sauerstoffproduktion	90	d	NOEC (est)	<	3	ana	S	3	Schilling et al. 1992	
Algen und Cyanobakterien	div.	Wachstum (Chlorophyllkonzentration und Zellzahl)	10	d	NOEC	=	5	ana	Form., S	3	Shehata et al. 1993	
Nasserpflanzen	Elodea canadensis	Biomasse (Trockengewicht)	56	d	NOEC	=	3.8	ana	M, R	3	Coors et al. 2006	
Wasserpflanzen	Lemna minor	Biomasse (Frondfläche)	49	d	NOEC	=	3.8	ana	M, R	3	Coors et al. 2006	
Vasserpflanzen	Myriophyllum spicatum	Biomasse (Trockengewicht)	56	d	NOEC	=	3.8	ana	M, R	3	Coors <i>et al.</i> 2006	
Vasserpflanzen	Myriophyllum spicatum	Wachstum (Sprosslänge)	56	d	NOEC	=	3.8	ana	M, R	3	Coors et al. 2006	
Nasserpflanzen	Potamogeton lucens	Wachstum (Sprosslänge)	56	d	NOEC	=	3.8	ana	M, R	3	Coors et al. 2006	
Nasserpflanzen	Potamogeton lucens	Biomasse (Trockengewicht)	56	d	NOEC	=	3.8	ana	M, R	3	Coors et al. 2006	
div.	div.	div.	14	m	NOEC	=	10	nom	S, O	3	Huber 1996, zitiert in EC 2007a	

Notizen

- **B** Effektwert mit nominalen Testkonzentrationen berechnet trotz abweichenden gemessenen Konzentrationen ausserhalb der Toleranz von 80 120%. Effektwert neu berechnet mit gemessenen Konzentrationen. Da das Resultat vergleichbar ist (innerhalb Faktor 2), wurde der Literaturwert übernommen
- C Testdauer zu kurz.
- D Testdauer nur 24 h, gemäss Autor ist die Sensitivität des Tests jedoch vergleichbar mit dem standardisierten 72 h Test nach ISO.
- E Aufgrund der nicht-monoton steigenden Dosis-Wirkungs-Kurve mit Klimisch 3 bewertet.
- H EC50 Wert im Report nicht nachvollziehbar aufgrund der Rohdaten (maximale Mortalität = 10% bei höchster Konzentration) und darum mit Klimisch 3 bewertet.
- J Hohe Lichtintensität (544 µmol m⁻² s⁻¹)
- **K** Tiefe Lichtintensität (207 μmol m⁻² s⁻¹)
- L Extrapolierter Wert (tiefste Testkonzentration 8 µg/L)
- M Testkonzentration neu berechnet: Durchschnitt aus gemessenen Konzentrationen
- 0 Studie wurde vom DAR (EC 2007) als nicht geeignet für die Risikobewertung eingestuft.

5 Grafische Darstellung der Effektdaten

Abbildung 1: Grafische Darstellung aller valider Kurzzeit- und Langzeit-Effektdaten aus Tabelle 2 für Terbuthylazin.

Die Primärproduzenten (Cyanobakterien, Algen und Wasserpflanzen) reagieren eindeutig am empfindlichsten auf Terbuthylazin. Ihre Effektwerte liegen, mit einer Ausnahme, alle tiefer als jene der Taxa der anderen zwei trophischen Ebenen (Abbildung 1). Für marine Organismen konnten keine validen Toxizitätsdaten gefunden werden.

6 Zusammenstellung der kritischen Toxizitätswerte

Im Folgenden werden die kritischen Toxizitätswerte der Effektdatensammlung zusammengefasst. Um chronische und akute Qualitätsziele herzuleiten, kann die AF-Methode auf der Datenbasis von akuten und chronischen Toxizitätsdaten verwendet werden. Dabei wird mit dem tiefsten chronischen Datenpunkt ein AA-EQS (Annual-Average-Environmental-Quality-Standard) und mit dem tiefsten akuten Datenpunkt ein MAC-EQS (Maximum-Acceptable-Concentration-Environmental-Quality-Standard) abgeleitet. Wenn der Datensatz umfassend genug ist, können diese EQS zusätzlich mittels einer Species Sensivity Distribution (SSD) bestimmt werden. Valide Mikro-/Mesokosmosstudien dienen einerseits zur Verfeinerung des AF, der durch eine SSD hergeleitet wurde. Andererseits können sie auch direkt zur Bestimmung eines EQS verwendet werden.

Bei Algen und Cyanobakterien wurde die Wachstumsrate gemäß TGD for EQS gegenüber der Biomasse bevorzugt, wo Effektwerte für beide Endpunkte für dieselbe Art vorhanden waren.

7 Chronische Toxizität

7.1 AA-EQS mit der AF Methode

Gruppe Spezies		Wert	Konz. (µg/L)	Literatur	
Basisdatensatz					
Primärproduzenten	Scenedesmus vacuolatus	NOEC	2.2	Faust <i>et al.</i> (2001)	
Krebstiere	Daphnia magna	NOEC	19	Shillabeer <i>et al.</i> (2002), zitiert in EC 2007a	
Fische	Oncorhynchus mykiss (juvenil)	NOEC	160	Bell (1994a), zitiert in EC 2007a	
weitere					
Insekten	Chironomus riparius (Larve)	NOEC	500	Memmert (1998), zitiert in EC 2007a	

 Tabelle 3:
 Übersicht zu den kritischen Toxizitätswerten für Wasserorganismen aus längerfristigen Untersuchungen für Terbuthylazin.

Es liegen valide chronische Effektdaten (NOECs) aus Einzelspeziesstudien für die Gruppen der Primärproduzenten, Krebstiere, Insekten und Fische vor (Tabelle 3). Alle 3 trophischen Ebenen sind repräsentiert. Es kann darum ein AF von 10 angewendet werden. Der tiefste verlässliche und relevante Wert aus dem chronischen Effektdatensatz beträgt 2.2 µg/L für die Grünalge *Scenedesmus vacuolatus*.

7.2 AA-EQS mit SSD Methode

Die Ableitung eines AA-EQS mittels SSD ist nicht möglich, da die Datenanforderungen nach dem TGD for EQS nicht erfüllt sind.

7.3 AA-EQS aus Mikro-/Mesokosmosstudien

Es sind keine validen Mikro- oder Mesokosmosstudien vorhanden, so dass ein AA-EQS basierend auf Mikro-/Mesokosmenstudien nicht abgeleitet werden kann.

Die Studie von Schilling *et al.* (1992) beinhaltet nur Primärproduzenten und wurde ohne Replikate durchgeführt. Von der Studie von Coors *et al.* (2006) sind keine belastbaren Effektwerte ableitbar, da nur 2 Testkonzentrationen getestet wurden mit Abstand Faktor 10. Die Studie von Huber (1996) wurde vom DAR (EC 2007) als nicht verwendbar für die Risikobewertung eingestuft.

Im "additional Report to the DAR" (UK 2010) wird die Studie von Huber (1994) zitiert, in der in Mikrokosmen über 83 Tagen ein NOEC von 5 µg/L (für die Formulierung A-5435 von Ciba-Geigy) bestimmt wurde. Dieser Wert liegt in der Nähe des tiefsten NOECs von 2.2 µg/L für die Grünalge *Scenedesmus vacuolatus* (Faust, 2001). In den *"conclusion on pesticide peer review*" der EFSA (EFSA 2011) wird aber erwähnt, dass für Terbuthylazin kein klarer NOEC identifiziert werden konnte.

8 Akute Toxizität

8.1 MAC-EQS mit der AF Methode

Gruppe	Spezies	Wert	Konz (µg/L)	Literatur
Basisdatensatz				
Primärproduzenten	Lemna gibba	EC50	12.8	Dengler (2001), zitiert in EC 2007a
Krebstiere	Daphnia magna	EC50	50900	US EPA 1995
Fische	Oncorhynchus mykiss	EC50 (geom. Mittel)	2735	Swarbrick and Maynard (2002), zitiert in EC 2007a; US EPA 1995

 Tabelle 4:
 Übersicht der kritischen akuten Toxizitätswerte für Wasserorganismen für Terbuthylazin.

Tabelle 5Risikoklassierung der akuten aquatischen Toxizität anhand der niedrigsten gemessenen EC50-Werte (UN2015).

Risikoklasse	Niedrigster EC50-Wert	Erreichter Wert
Nicht eingestuft	>100mg/l	
schädlich	<100mg/l; >10 mg/l	
Giftig	<10mg;>1mg/l	
Sehr giftig	<1mg/l	х

Es liegen valide EC50-Werte für die Organismengruppen der Primärproduzenten, Kleinkrebse und Fische vor (Tabelle 4). Terbuthylazin wird nach TGD for EQS als sehr giftig eingestuft (Tabelle 5).

Wenn valide EC50-Kurzzeit-Testergebnisse von Vertretern der 3 trophischen Ebenen Algen/Cyanobakterien, Krebstiere und Fische vorhanden sind, kann ein Assessmentfaktor von 100 mit dem EC50-Wert der sensitivsten Art verrechnet werden. Der AF kann gemäss TGD for EQS auf 10 erniedrigt werden, wenn der Wirkmechanismus bekannt ist und ein repräsentativer Vertreter der empfindlichsten taxonomischen Gruppe im Effektdatensatz mit dem tiefsten Wert vertreten ist. Als kritischer Wert für die EQS-Ableitung wird der EC50 der Studie mit der Wasserlinse *Lemna gibba* verwendet. Dieser beträgt 12.8 µg/L. Da diese Art ein Vertreter der für PSII-Hemmer empfindlichsten Gruppe der Primärproduzenten ist, kann ein Assessmentfaktor von 10 angewendet werden.

Der leicht tiefere Wert von 12.2 µg/L aus einer Studie mit *P. subcapitata* für den Endpunkt Zellzahl ("Yield") wurde nicht zur EQS-Ableitung verwendet, weil der Autor dieser Studie auch einen EC50 basierend auf der Wachstumsrate berechnete. Dieser ist gemäss TGD for EQS zu bevorzugen und liegt mit 28.9 µg/L höher als der kritische Wert (*Lemna gibba*).

MAC-EQS(AF) = 12.8 µg/L / 10 = 1.28 µg/L

8.2 MAC-EQS mit SSD Methode

Eine SSD mit allen validen, akuten Toxizitätsdaten wurde konstruiert (Abbildung 2).

Abbildung 2: Species Sensitivity Distribution (SSD) aller Arten erstellt mit den akuten Effektdaten. Detaillierte Informationen zur SSD im Appendix (Tabellen 7 – 9 und Abbildung 4 im Appendix).

Der verwendete Datensatz umfasst nur 5 taxonomische Gruppen und ist nicht normalverteilt (Tabelle 15 im Appendix) und kann somit gemäß TGD for EQS nicht für die Herleitung eines EQS verwendet werden. In der Verteilung in Abbildung 2 ist ein Bruch zwischen Primärproduzenten und den restlichen taxonomischen Gruppen zu erkennen, welcher auf der Wirkungsweise des Herbizides beruht (Photosynthesehemmung). Nach dem TGD for EQS soll in solchen Fällen eine SSD ausschließlich mit Arten der sensitivsten taxonomischen Gruppe(n) konstruiert werden.

Abbildung 3 zeigt die SSD basierend auf allen validen, akuten Effektdaten der Primärproduzenten. Der resultierende HC5 beträgt 7.1 µg/L. Die Daten sind normalverteilt, da aber nur 7 Datenpunkte vorhanden sind, darf kein EQS mit dieser Methode abgeleitet werden.

Abbildung 3: Species Sensitivity Distribution (SSD) aller Primärproduzenten erstellt mit den akuten Effektdaten. Detaillierte Informationen zur SSD im Appendix (Tabellen 10 – 12 und Abbildung 5).

9 Bewertung des Bioakkumulationspotentials und der sekundären Intoxikation

Nach dem TGD for EQS (EC, 2011) soll zur Abschätzung des Risikos einer sekundären Intoxikation zunächst das Bioakkumulationspotential einer Substanz bestimmt werden. Dabei liefert ein gemessener Biomagnifikationsfaktor (BMF) von >1 oder ein Biokonzentrationsfaktor (BKF) >100 einen Hinweis auf ein Bioakkumulationspotential. Liegen keine verlässlichen BMF oder BCF Daten vor, kann stattdessen der log K_{OW} zur Abschätzung verwendet werden, welcher ab einem Wert von >3 auf ein Bioakkumulationspotential hinweist.

Mit einem gemessenen Wert von 3.4 bzw. 3.03 liegt der log K_{OW} von Terbuthylazin zwar über 3, der höchste gemessene BKF liegt allerdings mit 34 ist unter dem Triggerwert von 100 für potentielle Biomagnifikation. In Tabelle 6 sind relevante Bioakkumulationsstudien und BKF-Werte aufgelistet. Gemäss dem TGD for EQS muss daher kein EQS_{biota} Wert abgeleitet werden. Der pflanzenspezifische Wirkmechanismus und die vergleichsweise geringe Toxizität gegenüber tierischen Arten deuten darauf hin, dass für Vertebraten keine Gefahr durch sekundäre Intoxikation besteht. Dies gilt auch für das Kontaminationsrisiko für den Mensch durch den Verzehr von Fischereiprodukten.

Organismus	BKF	Quelle
Daphnia magna	4.5 (est)	Schramm et al. 1998
Lepomis macrochirus	34	Baranowski (1999), zitiert in EC 2007a
Oncorhynchus mykiss	19	Van Dijk (1997), zitiert in EC 2007a
Oncorhynchus mykiss	6.2 (bei 4°C)	Tarja <i>et al.</i> 2003
Oncorhynchus mykiss	5.5 (bei 10°C)	Tarja <i>et al.</i> 2003
Oncorhynchus mykiss	8.1 (bei 17°C)	Tarja <i>et al.</i> 2003

Tabelle 6 Übersicht der Biokonzentrationsfaktoren (BKF) aus Bioakkumulationsstudien (est = aus Grafik geschätzt).

10 Schutz der aquatischen Organismen

Der Effektdatensatz für Terbuthylazin umfasst alle 3 trophischen Ebenen sowohl bei den Kurzzeit- als auch bei den Langzeittoxizitäten. In beiden Datensätzen stellen aufgrund des pflanzenspezifischen Wirkmechanismus die Primärproduzenten (Cyanobakterien, Algen und Wasserpflanzen) die empfindlichsten Organismengruppen dar.

Der AA-EQS für Terbuthylazin liegt bei 0.22 μg/L. Der MAC-EQS für Terbuthylazin liegt bei 1.28 μg/L.

Diese Werte sind vergleichbar mit den Qualitätskriterien anderer Länder (siehe Kapitel 3):

In den EFSA Conclusions wird darauf eingegangen, dass die Metaboliten Desethyl-Terbuthylazin, Terbutryn und Hydroxy-Terbuthylazin (sehr) giftig sind, das Risiko für aquatische Organismen allerdings gering sei. Das Risiko für das Metabolit Desethylhydroxy-Terbuthylazin sei aufgrund mangelnder Daten hingegen nicht bewertbar. Die Niederlande schlagen für Desethyl-Terbuthylazin einen AA-EQS 2.4 ng/L vor (RIVM Datenbank), also ca. 100-fach tiefer als der hier vorgeschlagenen AA-EQS für Terbuthylazin. In der Studie von Fiori und Pistocchi (2014) wirkte Terbuthylazin jedoch toxischer gegenüber der marinen Kieselalge *Skeletonema marinoi* als Desethyl-Terbuthylazin. Die hier vorgeschlagenen EQS sollten einen ausreichenden Schutz für alle aquatischen Organismen bieten. Die Gefahr der Bioakkumulation und damit einer sekundären Intoxikation erscheint gering. Das Risiko für aquatischen Organismen durch Metaboliten von Terbuthylazin erscheint noch nicht gänzlich geklärt und sollte näher untersucht werden.

11 Änderungen gegenüber der Version vom 17.07.2012

Keine der im Zuge der Aktualisierung recherchierten Effektdaten wurde als valide bewertet. Das vorliegende Dossier und die darin abgeleiteten EQS-Vorschläge bleiben daher im Wesentlichen unverändert.

12 Referenzen

- Bathe R, Sachsse K, Ullmann L, Hoermann W, Zak F, Hess R (1975): The evaluation of fish toxicity in the laboratory. Proc Eur Soc Toxicol 16: 113-124.
- Bell G (1994a): Zitiert in EC (2007a). Originalliteratur nicht angegeben.
- Cedergreen N, Spliid N H, Streibig J C (2004): Species-specific sensitivity of aquatic macrophytes towards two herbicide. Ecotoxicology and Environmental Safety 58(3): 314-323.
- Cedergreen N, Andersen L, Olesen C F, Spliid H H, Streibig J C (2005): Does the effect of herbicide pulse exposure on aquatic plants depend on Kow or mode of action? Aquatic Toxicology 71(3): 261-271.
- Cedergreen N, Streibig J C (2005a): Can the choice of endpoint lead to contradictory results of mixture-toxicity experiments? Environmental Toxicology and Chemistry 24(7): 1676-1683.
- Cedergreen N, Streibig J C (2005b): The toxicity of herbicides to non-target aquatic plants and algae: Assessment of predictive factors and hazard. Pest Management Science 61(12): 1152-1160.
- Choi C J, Berges J A, Young E B (2012): Rapid effects of diverse toxic water pollutants on chlorophyll a fluorescence: Variable responses among freshwater microalgae. Water Research 46(8): 2615-2626.
- Coors A, Kuckelkorn J, Hammers-Wirtz M, Strauss T (2006): Application of in-situ bioassays with macrophytes in aquatic mesocosm studies. Ecotoxicology 15(7): 583-591.
- Dengler D. (2001): Assessment of toxic effects of terbuthylazine technical on the duckweed *Lemna gibba* in a semi static test and a recovery period. GAB Biotechnology GmbH, Niefern-Öschelborn. Oxon Italia S.P.A, Pero, Italy. Report No: 20001420/01-ARLg.
- EC (1998): DIRECTIVE 98/8/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL. European Commission.
- EC (2007a): Draft Assessment Report (DAR) for Terbuthylazine Volume 3. European Commission.
- EC (2007b): Commission Regulation (EC) No 1451/2007. European Commission.
- EC (2011): Technical Guidance For Deriving Environmental Quality Standards. European Communities.
- EFSA (2011): Conclusion on the peer review of the pesticide risk assessment of the active substance terbuthylazine; European Food Safety Authority (EFSA), Parma, Italy.
- EPI (2011): Version 4.10 .The EPI (Estimation Programs Interface) Suite™ . A Windows®-based suite of physical/chemical property and environmental fate estimation programs developed by the EPA's Office of Pollution Prevention Toxics and Syracuse Research Corporation (SRC).
- Eullaffroy P, Vernet G (2003): The F684/F735 chlorophyll fluorescence ratio: A potential tool for rapid detection and determination of herbicide phytotoxicity in algae. Water Research 37(9): 1983-1990.
- Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme L H (2001): Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquatic Toxicology 56(1): 13-32.
- Fiori E, Mazzotti M, Guerrini F, Pistocchi R (2013): Combined effects of the herbicide terbuthylazine and temperature on different flagellates from the Northern Adriatic Sea. Aquatic Toxicology 128-129, 79-90.
- Fiori E, Pistocchi R (2014): Skeletonema marinoi (Bacillariophyceae) sensitivity to herbicides and effects of temperature increase on cellular responses to terbuthylazine exposure. Aquatic Toxicology 147, 112-120.
- Grade (1993c): Report on the growth inhibition test of GS 13529 tech. to Diatoms (*Navicula pelliculosa*). Novartis Crop Protection AG, Basel, Switzerland. Ciba-Geigy Basel, Oekotoxikologie, Basel, Switzerland. Report No: 928433.

- Hawxby K, Tubea B, Ownby J, Basler E (1977): Effects of various classes of herbicides on four species of algae. Pesticide Biochemistry and Physiology 7(3): 203-209.
- Hoberg J (1993): GS 13520 Toxicity to Duckweed, *Lemna gibba*. Novartis Crop Protection AG, Basel, Switzerland. Springborn Laboratoriey Inc., Wareham, United states. Report No: 93-9-4947.
- Hostovsky M, Blahova J, Plhalova L, Stepanova S, Praskova E, Marsalek P, Svobodova Z (2011): Oxidative stress parameters in early developmental stages of common carp (Cyprinus carpio L.) after subchronic exposure to terbuthylazine and metribuzin. Neuro endocrinology letters 33, 124-129.

Huber (1996): Zitiert in EC 2007. Originalliteratur nicht angegeben.

- ISO (1997): Water quality Determination of selected plant treatment agents Methods using high performance liquid chromatography with UV detection after solid-liquid extraction. International Organisation of Standardisation.
- Kampioti A A, Da Cunha A C B, De Alda M L, Barceló D (2005): Fully automated multianalyte determination of different classes of pesticides, at picogram per litre levels in water, by on-line solid-phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Analytical and Bioanalytical Chemistry 382(8): 1815-1825
- Kelly C (1996): Terbuthylazine technical algal growth inhibition. Huntingdon Life Sciences Limited, Cambridgeshire, UK. Oxon Italia S.P.A, Pero, Italy. Report No: OXN 180/962297.
- Klimisch H J, Andreae M, Tillmann U (1997): A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology 25(1): 1-5.
- Lorenz R, Brüggemann R, Steinberg C E W, Spieser O H (1996): Humic material changes effects of terbutylazine on behavior of zebrafish (*Brachydanio rerio*). Chemosphere 33(11): 2145-2158.
- Marchini S, Passerini L, Cesareo D, Tosato M L (1988): Herbicidal triazines: Acute toxicity on *Daphnia*, fish, and plants and analysis of its relationships with structural factors. Ecotoxicology and Environmental Safety 16(2): 148-157.
- Migchielsen M H J (2002a): 120-hour fresh water cyanobacteria growth inhibition test with terbuthylazine technical. Notox B.V, 's-Hertogenbosch, The Netherlands. Oxon Italia S.P.A, Pero, Italy. Report No: 314055.
- Migchielsen M H J (2002b): Fresh water algal growth inhibition test with terbuthylazine technical. Notox B.V, 's-Hertogenbosch, The Netherlands. Oxon Italia S.P.A, Pero, Italy. Report No: 346444.
- Moermond C T A, Kase R, Korkaric M, Ågerstrand M (2016): CRED: Criteria for reporting and evaluating ecotoxicity data. Environmental Toxicology and Chemistry 35, 1297-1309.
- Munkegaard M, Abbaspoor M, Cedergreen N (2008): Organophosphorous insecticides as herbicide synergists on the green algae *Pseudokirchneriella subcapitata* and the aquatic plant *Lemna minor*. Ecotoxicology 17(1): 29-35.
- Niederlande (2010): Staatscourant 5615. Government of the Netherlands.
- Nitschke L, Wilk A, Schüssler W, Metzner G, Lind G (1999): Biodegradation in laboratory activated sludge plants and aquatic toxicity of herbicides. Chemosphere 39(13): 2313-2323.
- OGewV (2016): Verordnung zum Schutz der Oberflächengewässer (Oberflächengewässerverordnung OGewV) vom 20. Juni 2016. BGBI. I S. 1373.
- Okamura H, Aoyama I, Liu D, Maguire R J, Pacepavicius G J, Lau Y L (2000): Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Research 34(14): 3523-3530.
- OPP (2000) Pesticide Ecotoxicity Database. Environmental Fate and Effects Division, U.S.EPA, Washington, D.C. http://www.ipmcenters.org/Ecotox.
- Penetra A, Vale Cardoso V, Ferreira E, Benoliel M J (2010): Solid-phase extraction and gas chromatography-tandem mass spectrometry method for the simultaneous determination of several pesticides in water. Water Science and Technology 62(3): 667-675.

- Pérez J, Domingues I, Soares A M V M, Loureiro S (2011): Growth rate of *Pseudokirchneriella subcapitata* exposed to herbicides found in surface waters in the Alqueva reservoir (Portugal): A bottom-up approach using binary mixtures. Ecotoxicology 20(6): 1167-1175.
- Pérez J, Domingues I, Monteiro M, Soares A M V M, Loureiro S (2013a): Synergistic effects caused by atrazine and terbuthylazine on chlorpyrifos toxicity to early-life stages of the zebrafish Danio rerio. Environmental Science and Pollution Research 20, 4671-4680.
- Pérez J, Monteiro M S, Quintaneiro C, Soares A M V M, Loureiro S (2013b): Characterization of cholinesterases in Chironomus riparius and the effects of three herbicides on chlorpyrifos toxicity. Aquatic Toxicology 144-145, 296-302.
- Plhalova L, Stepanova S, Blahova J, Praskova E, Hostovsky M, Skoric M, Zelnickova L, Svobodova Z, Bedanova I (2011): The effects of subchronic exposure to terbuthylazine on zebrafish. Neuro endocrinology letters 33:113-9.

PPDB (undatiert) Pesticide properties database. University of Hertfordshire. https://sitem.herts.ac.uk/aeru/ppdb/

- Štěpanova S, Plhalová L, Doleželov P, Prokeš M, Maršálek P, Škorič M, Svobodová Z (2012): The effects of subchronic exposure to terbuthylazine on early developmental stages of common carp. The Scientific World Journal 2012.
- Sbrilli G, Bimbi B, Cioni F, Pagliai L, Luchi F, Lanciotti E (2005): Surface and ground waters characterization in Tuscany (Italy) by using algal bioassay and pesticide determinations: Comparative evaluation of the results and hazard assessment of the pesticides impact on primary productivity. Chemosphere 58(5): 571-578.
- Schilling N, Reimann I, Krauss B, Alles E (1992): Effects of terbuthylazine on photo-autotrophic organisms in the aquatic ecosystem. Schr.-Reihe Verein WaBoLu 89: 157-164.
- Schramm K W, Behechti A, Beck B, Kettrup A (1998): Influence of an aquatic humic acid on the bioconcentration of selected compounds in *Daphnia magna*. Ecotoxicology and Environmental Safety 41(1): 73-76.
- Shabana E F, Abou-Waly H (1995): Growth and some physiological aspects of *Nostoc muscorum* in response to mixtures of two triazine herbicides. Bulletin of Environmental Contamination and Toxicology 54(2): 273-280.
- Shehata S A, El-Dib M A, Abou-Waly H F (1993): Effect of triazine compounds on freshwater algae. Bulletin of Environmental Contamination and Toxicology 50(3): 369-376.
- Shillabeer N, Maynard J S, Woodyer J M (2002): GS13529 (Terbuthylazine technical): Chronic toxicity to *Daphnia magna*. Syngenta Crop Protection AG, Basel, Switzerland. Brixham Environmental Laboratory, Brixham, United Kingdom, Report No: BL7397/B.
- Slowenien (2010): Summary report for Terbutylazine. ZZV Maribor Inštitut za varstvo okolja.
- Swarbrick R H, Maynard S (2002): GS13529 (Terbuthylazine technical): Acute toxicity to rainbow trout (*Oncorhynchus mykiss*). Syngenta Crop Protection AG, Basel, Switzerland. Report No: BL7395/B.
- Tarja N, Kirsti E, Marja L, Kari E (2003): Thermal and metabolic factors affecting bioaccumulation of triazine herbicides by rainbow trout (*Oncorhynchus mykiss*). Environmental Toxicology 18(4): 219-226.
- Tang, J. Y., & Escher, B. I. (2014): Realistic environmental mixtures of micropollutants in surface, drinking, and recycled water: herbicides dominate the mixture toxicity toward algae. Environmental toxicology and chemistry, 33(6), 1427-1436.
- Tomlin C D S (2002) The Pesticide Manual. British Crop Production Council (BCPC).
- Tomlin C D S (2009) The Pesticide Manual. British Crop Production Council (BCPC).
- UK (2010): Additional Report to the DAR Terbuthylazine Rapporteur Member State The United Kingdom, Feb. 2010.
- UN (2015): Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 6th revised edition ed. United Nations, New York.
- US EPA (1995): Reregistration Eligibility Decision (RED) Terbuthylazine. Environmental Protection Agency (EPA).

van Vlaardingen, P. L. A., Traas, T. P., Wintersen, A. M., & Aldenberg, T. (2005): ETX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity Data.

WHO (2003): Terbuthylazine (TBA) in Drinking-water. World Health Organisation. Geneva, Switzerland.

13 Appendix

Tabelle 7Verwendete EC50-Werte zur Erstellung der SSD mit allen Arten und Zuordnung der Artnamen zu den in
der SSD verwendeten Werten.

EC50 (µg/L)	Art	Taxonomische Gruppe
12.8	Lemna gibba	Wasserpflanzen
15.9	Scenedesmus vacuolatus	Algen
16	Scenedesmus subspicatus	Algen
28.9	Pseudokirchneriella subcapitata	Algen
52	Anabaena flos-aquae	Cyanobakterien
102	Microcystis aeruginosa	Cyanobakterien
115	Lemna minor	Wasserpflanzen
2735	Oncorhynchus mykiss	Fische
7141	Lepomis macrochirus	Fische
50900	Daphnia magna	Krebstiere

Tabelle 8HC5 der SSD der akuten EC50/LC50 Werte für alle Arten - berechnet mit dem Programm ETX 2.0 (van
Vlaardingen et al. 2004).

Parameters of the normal distribution				
Name	Value	Description		
mean	2.275636042	mean of the log toxicity values		
s.d.	1.269783307	sample standard deviation		
n	10	sample size		
		HC5 results		
Name	Value	log10(Value)	Description	
LL HC5	0.037961477	-1.420656898	lower estimate of the HC5	
HC5	1.302964028	0.114932426	median estimate of the HC5	
UL HC5	9.63578179	0.983886956	upper estimate of the HC5	
sprHC5	253.8305289	2.404543855	spread of the HC5 estimate	
FA At HC5 results				
Name	Value	Description		
FA lower	0.612	5% confidence limit of the FA at star	ndardised median logHC5	
FA median	5	50% confidence limit of the FA at standardised median logHC5		
FA upper	20.036	95% confidence limit of the FA at standardised median logHC5		
		HC50 results		
Name	Value	log10(Value)	Description	
LL HC50	34.63909377	1.539566521	lower estimate of the HC50	
HC50	188.6409792	2.275636042	median estimate of the HC50	
UL HC50	1027.319574	3.011705563	upper estimate of the HC50	
sprHC50	29.65780746	1.472139041	spread of the HC50 estimate	
		FA At HC50 resul	ts	
Name	Value	Description		
FA lower	30.14800607	5% confidence limit of the FA at star	ndardised median logHC50	
FA median	50	50% confidence limit of the FA at sta	andardised median logHC50	
FA upper	69.85199394	95% confidence limit of the FA at standardised median logHC50		

Tabelle 9"Goodness of fit" für die SSD der akuten EC50/LC50Werte für alle Arten - berechnet mit dem Programm ETX 2.0(van Vlaardingen et al. 2004).

Anderson-Darling test for normality					
Sign. level	Critical	Normal?			
0.1	0.631	Rejected			
0.05	0.752	Accepted	AD Statistic:	0.750106342	
0.025	0.873	Accepted	n:	10	
0.01	1.035	Accepted			
	Kolmo	gorov-Smirno	ov test for normality	1	
Sign. level	Critical	Normal?			
0.1	0.819	Rejected			
0.05	0.895	Rejected	KS Statistic:	0.914139079	
0.025	0.995	Accepted	n:	10	
0.01	1.035	Accepted			
	Cran	ner von Mises	test for normality		
Sign. level	Critical	Normal?			
0.1	0.104	Rejected			
0.05	0.126	Accepted	CM Statistic:	0.121956177	
0.025	0.148	Accepted	n:	10	
0.01	0.179	Accepted			

SSD Histogram and PDF

Abbildung 4 Histogramm für die SSD der akuten EC50/LC50 Werte für alle Arten - berechnet mit dem Programm ETX 2.0 (van Vlaardingen et al. 2004).

Tabelle 10Verwendete EC50-Werte zur Erstellung der SSD mit ausschliesslich Primärproduzenten und Zuordnung
der Artnamen zu den in der SSD verwendeten Werten.

EC50 (μg/L)	Art	Taxonomische Gruppe
12.8	Lemna gibba	Wasserpflanzen
15.9	Scenedesmus vacuolatus	Algen
16	Scenedesmus subspicatus	Algen
28.9	Pseudokirchneriella subcapitata	Algen
52	Anabaena flos-aquae	Cyanobakterien
102	Microcystis aeruginosa	Cyanobakterien
115	Lemna minor	Wasserpflanzen

Tabelle 11HC5 der SSD der akuten EC50/LC50 Werte für Primärproduzenten - berechnet mit dem Programm ETX2.0 (van Vlaardingen et al. 2004).

Parameters of the normal distribution					
Name	Value	Description			
mean	1.536989468	mean of the log toxicity values			
s.d.	0.396370565	sample standard deviation			
n	7	sample size			
		HC5 results			
Name	Value	log10(Value)	Description		
LL HC5	1.547176858	0.189539961	lower estimate of the HC5		
HC5	7.088562611	0.85055818	median estimate of the HC5		
UL HC5	14.86553334	1.172180495	upper estimate of the HC5		
sprHC5	9.60816681	0.982640534	spread of the HC5 estimate		
	FA At HC5 results				
Name	Value	Description			
FA lower	0.341	5% confidence limit of the FA at standardised median logHC5			
FA median	5	50% confidence limit of the FA at standardised median logHC5			
FA upper	25.009	95% confidence limit of the FA at standardised median logHC5			
		HC50 results			
Name	Value	log10(Value)	Description		
LL HC50	17.61464411	1.245873873	lower estimate of the HC50		
HC50	34.434158	1.536989468	median estimate of the HC50		
UL HC50	67.31394796	1.828105063	upper estimate of the HC50		
sprHC50	3.821476467	0.58223119	spread of the HC50 estimate		
FA At HC50 results					
Name	Value	Description			
FA lower	26.70707541	5% confidence limit of the FA at standardised median logHC50			
FA median	50	50% confidence limit of the FA at standardised median logHC50			
FA upper	73.29292459	95% confidence limit of the FA at standardise	d median logHC50		

Tabelle 12 "Goodness of fit" für die SSD der akuten EC50/LC50Werte für Primärproduzenten - berechnet mit dem Programm ETX 2.0(van Vlaardingen et al. 2004).

	Anderson-Darling test for normality				
Sig	gn. level	Critical	Normal?		
	0.1	0.631	Accepted		
	0.05	0.752	Accepted	AD Statistic:	0.449079759
	0.025	0.873	Accepted	n:	7
	0.01	1.035	Accepted		
		Kolmo	gorov-Smii	rnov test for normality	
Sig	gn. level	Critical	Normal?		
	0.1	0.819	Accepted		
	0.05	0.895	Accepted	KS Statistic:	0.674376493
	0.025	0.995	Accepted	n:	7
	0.01	1.035	Accepted		
		Cran	ner von Mis	es test for normality	
Sig	gn. level	Critical	Normal?		
	0.1	0.104	Accepted		
	0.05	0.126	Accepted	CM Statistic:	0.049357868
	0.025	0.148	Accepted	n:	7
	0.01	0.179	Accepted		

Abbildung 5 Histogramm für die SSD der akuten EC50/LC50 Werte für Primärproduzenten - berechnet mit dem