

Schweizerisches Zentrum für angewandte Ökotoxikologie Centre Suisse d'écotoxicologie appliquée Eawag-EPFL

EQS - Vorschlag des Oekotoxzentrums für:

Isoproturon

Ersterstellung: 15.09.2011 (Stand der Datensuche) 20.04.2012 (Einarbeitung des Gutachtens) 1. Aktualisierung 19.11.2015 (Stand der Datensuche) 14.02.2017 (Einarbeitung des Gutachtens)

2015

1. Qualitätskriterien-Vorschläge

CQK (AA-EQS):	0.64 µg/L	(vor Aktualisierung 0.32 μg/L)
AQK (MAC-EQS):	1.7 μg/L	(vor Aktualisierung 1.2 μg/L)

Das chronische Qualitätskriterium (CQK \triangleq AA-EQS) und das akute Qualitätskriterium (AQK \triangleq MAC-EQS) wurden nach dem TGD for EQS der Europäischen Kommission (EC, 2011) hergeleitet. Damit die Dossiers international vergleichbar sind, wird im Weiteren die Terminologie des TGD verwendet.

2. Physikochemische Parameter

In Tabelle 1 werden Identität und chemische und physikalische Parameter für Isoproturon angegeben. Wo bekannt, wird mit (exp) spezifiziert, dass es sich um experimentell erhobene Daten handelt, während es sich bei mit (est) gekennzeichneten Daten um abgeschätzte Werte handelt. Wenn keine dieser beiden Angaben hinter den Werten steht, fand sich in der zitierten Literatur keine Angabe.

Eigenschaften	Wert	Referenz
IUPAC Name	3-(4-isopropylphenyl)-1,1-dimethylurea	EC 2005
Chemische Gruppe	Phenylharnstoff	EC 2005
Strukturformel	C ₁₂ H ₁₈ N ₂ O	EC 2005
CAS-Nummer	34123-59-6	EC 2005
EINECS-Nummer	251-835-4	EC 2005
Strukturformel	H ₃ C _N H ₁ CH ₃ CH ₃ CH ₃	Sigma Aldrich®
SMILES-code	CC(C)C1=CC=C(C=C1)NC(=O)N(C)C	Bolton et al. 2008
Molekulargewicht (g·mol ⁻¹)	206.29	EPI, 2011
Schmelzpunkt (°C)	156.5-158.0	EC 2005
Siedepunkt (°C)	344.2	EPI, 2011
Dampfdruck (Pa)	2.8-8.1 x 10 ⁻⁶ bei 20°C	EC 2005
Henry's-Konstante (Pa·m ³ ·mol ⁻¹)	1.46 x 10 ⁻⁵ bei 22 °C	EC 2005
Wasserlöslichkeit (mg·L ⁻¹)	70.2 143.8 (est) 65 (exp)	EC 2005 EPI. 2011
pK₄	Keine Dissoziation	EC Monograph, 1999
<i>n</i> -Octanol/Wasser Verteilungskoeffizient(log <i>K</i> _{ow})	2.5 bei 25°C (nicht pH abhängig)2.84 (est)2.87 (exp)	EC 2005 EPI, 2011
Verteilungskoeffizient zwischen suspendierter Materie und Wasser (log K _{susp-water})	1.29 und 2.44 berechnet nach TGD for EQS; K _{susp-water} = Koc x Foc _{susp, TGD}	TGD for EQS, EC 2011, S. 131, <i>A1.2.3.3.</i> <i>Kp, susp-water</i>
Sediment/Boden und Wasser (K_d)		

Tabelle 1: Geforderte Angaben zu Isoproturon nach dem TGD for EQS (EC 2011). Zusätzliche Angaben in kursiv. exp = experimentell erhobene Werte, est = geschätzte Werte

Eigenschaften	Wert	Referenz
Verteilungskoeffizient zwischen dem organischen Kohlenstoff im Boden/Sediment und Wasser (log K_{oc})	2.29 (est) 2.44 (est)	EPI, 2011
Hydrolysestabilität in Wasser (Halbwertszeit)	Gilt als Stabil gegenüber Hydrolyse mit Halbwertszeiten > 30 Tagen	EC (2014) Annex B.2, Tab. B.2.1-1
Photostabilität in Wasser (Halbwertszeit in Tagen)	 72 – 88 (25 °C, Bestrahlung entspricht Sonnenlicht 52 °N, Juni) 48 (26.5 °C, Bestrahlung entspricht Sonnenlicht 40 °N, Äquinoktium) 4.5 (26.5 °C, aufgereinigtes Wasser, Bestrahlung entspr. Sonnenlicht 40°N, Äquinoktium) ; für alle: Bestrahlung mit Xenonlampe, bei pH 7 	EC Monograph, 1999
Stabilität in Wasser-Sediment systemen (Halbwertszeiten)	20-61 Tage für die Wasserphase 44-276 Tage im gesamten System	EC Monograph, 1999

3. Allgemeines

- Anwendung: Isoproturon ist ein von Ciba-Geigy AG eingeführtes Herbizid, welches im Vorund Nachauflauf zur Bekämpfung von jährlichen Ungräsern (*Alopecurus myosuroides, Apera spica-venti, Avena fatua* and *Poa annua*) und vielen breitblättrigen Unkräutern in Frühlings- und Winterweizen (ausser Hartweizen), Frühlings- und Wintergerste, Winterroggen und Triticale eingesetzt wird und dies mit einer Menge von 1-1.5 kg/ha (Tomlin, 2006).
- <u>Wirkungsweise:</u> Isoproturon gehört zur chemischen Gruppe der Phenylharnstoffe, welche die Photosynthese beeinflussen indem sie die Aktivität des Photosystem-II (PSII) blockieren. Isoproturon bindet dabei an das D1-Protein im PSII Reaktionszentrum. Durch diesen spezifischen Wirkmechanismus beeinflusst Isoproturon vor allem die Primärproduzenten in Gewässern, wie höhere Wasserpflanzen und Algen.
- <u>Analytik:</u> Im Band 1 des EC Monographs (1999) wird eine Bestimmungsgrenze (LOQ) von 0.05 μg Isoproturon in einem Liter Wasser angegeben. Mittels online-SPE-UHPLC–MS/MS wurde ein LOD und LOQ von 3 und 10 ng/L erreicht (Hurtado-Sánchez *et al.* 2013).
- Existierende EQS:Die Europäische Kommission (EC, 2005) ermittelte einen AA-EQS von 0.32μg/L und einen MAC-EQS von 1.0 μg/L.

Stabilität und

<u>Abbauprodukte</u>: Anhand der Angaben in Tabelle 1 ist davon auszugehen, dass bezüglich der Stabilität Isoproturons in der Wasserphase vor allem Photolyse zu berücksichtigen ist, während Biodegradation und vor allem Hydrolyse eine weniger wichtige Rolle spielen. Die niedrigste Halbwertszeit für die Photolyse wurde mit 4.5 Tagen angegeben. Allerdings basiert dieser Wert auf Versuchen bei Strahlungsintensitäten, wie sie selbst in Tests mit Algen und Wasserpflanzen eingesetzt werden. nicht Der Photoabbau in ökotoxikologischen Biotests geschieht also vermutlich weitaus langsamer. Backhaus und Mitarbeiter (2004) untersuchten die Stabilität von Isoproturon unter den Bedingungen eines Algentests und verzeichneten einen Verlust von weniger als 5% über 24 h. Aus den von Kirby und Sheahan (1994) erarbeiteten Daten kann eine Wiederfindungsrate von mehr als 80% nach 48 h berechnet werden. Larras et al. (2013) untersuchten den Substanzverlust in ihrem Testsystem (30 ml Medium in Glassröhrchen). Unabhängig von der Anwesenheit von Algen betrug der Substanzverlust nach 96 h lediglich 14%, wobei der Grossteil davon (insgesamt 10%) durch Adsorption an die Gefässwand zustande kam. Riedl et al. (2015) massen in einem Test mit Myriophyllum spicatum während 14-tägiger Exposition und unter Lichteinfluss keinen Substanzverlust. Aufgrund dieser Resultate und der Tatsache, dass der log K_{ow} und log K_{oc} relativ klein sind, kann davon ausgegangen werden, dass Isoproturon in statischen Testansätzen (bis 14 d) stabil sein wird, sofern keine sehr hohen Lichtintensitäten einwirken. In Langzeituntersuchungen (>14 d) ohne kontinuierliche oder periodische Erneuerung der Testkonzentration (semi-statischer Ansatz und Durchfluss-Systeme) ist die analytische Verifizierung der Expositionskonzentrationen hingegen zwingend für die Validität eines Testergebnisses.

Im *Renewal Assessment Report* der Europäischen Kommission (EC 2014) werden Desmethyl-Isoproturon und Didesmethyl-Isoproturon als Metabolite Isoproturons angegeben. Desmethyl-Isoproturon kommt nach 60 Tagen mit 19.2 % in der Wasserphase vor, Didesmethyl-Isoproturon mit 14.2 % nach 30 Tagen (EC 2014, Tabelle B.9.1-2). Desmethyl-Isoproturon wird in EC 2014 als potentiell relevant für die aquatischen Umwelt angesehen (Tabelle 2 für Toxizitätsdaten), während für Didesmethyl-Isoproturon zur Zeit keine aquatischen Toxizitätsstudien vorliegen. Ein Vergleich mit den Effektdaten aus Tabelle 3 legt nahe, dass die Toxizität Desmethyl-Isoproturon in einem ähnlichen Bereich liegt wie die von Isoproturon selbst. In EC 2014 wurde geschlussfolgert, dass die Toxizität von Desmethyl-Isoproturon gegenüber aquatischen Organismen geringer ist als die der Muttersubstanz (EC 2014, Annex B.9, S. 166).

Tabelle 2: Ökotoxizität von Desmethyl-Isoproturon

Organismus	Parameter	Wert (µg/L)	Referenz				
<i>Navicula pelliculosa</i> (Algen)	EC ₅₀ (Biomasse, 72 h)	52	Hoberg 1999, zitiert in EC Monograph, 1999				
Pseudokirchneriella subcapitata (Algen)	EC_{50} (Wachstumsrate) EC_{50} (Biomasse)	177 62	Dengler 2002a, zitiert in EC (2014), Annex B.9, S. 58				
<i>Lemna gibba</i> (höhere Wasserpflanze)	EC ₅₀ (Wachstumsrate) NOEC (Wachstumsrate)	270 40	Dengler 2002a, zitiert in EC (2014) Annex B.9, S. 84				
Daphnia magna (Krebstiere)	EC ₅₀ (Immobilisierung, 48 h) NOEC (Immobilisierung, 48 h)	21'200 12'400	Heintze 2002b, zitiert in EC (2014) Annex B.9, S. 39				
Oncorhynchus mykiss (Fisch)	LC₅₀ (Mortalität, 96 h) NOEC (Mortalität, 96 h)	31'600 9'000	EC (2014) Annex B.9, S. 28				

4. Effektdatensammlung

Für Isoproturon und kommerzielle Formulierungen mit Isoproturon als (einziger) Wirkstoff sind Effektdaten zu Bakterien, Algen, Wasserpflanzen, Wimperntierchen, Fadenwürmern, Mollusken, Stachelhäutern, Insekten, Amphibien, Krebstieren und Fischen vorhanden (Tabelle 3). Effektwerte aus Tests mit Formulierungen werden nicht für die EQS-Ableitung verwendet, da diesen Stoffe beigemischt sind, deren direkte Toxizität und deren Einfluss auf die Toxizität von Isoproturon unklar ist. Resultate aus solchen Studien sind am Ende von Tabelle 3 gelistet und sollen als unterstützende Informationen dienen. Literaturdaten, die in grau dargestellt wurden, erfüllen nicht die Datenanforderungen nach dem TGD for EQS (EC, 2011), sollen aber als zusätzliche Information genannt werden. Eine Bewertung der Validität^a wurde nach den Klimisch-Kriterien (Klimisch et al. 1997) durchgeführt, bzw. nach den CRED-Kriterien für Studien die im Zuge der Aktualisierung herangezogen wurden (Moermond et al. 2016). Daten und Studienbewertungen aus dem EC Monograph (1999) und dem EC (2014) wurden "face value" übernommen. Wenn eine Neubewertung in EC (2014) stattfand, wurde diese übernommen und ebenfalls in der Spalte "Referenz" vermerkt. Für Studiendetails sollte sich der Leser primär an den aktuelleren und teilweise ausführlicheren EC RAR wenden (dies gilt auch für Studien die nur mit der Referenz EC Monograph angegeben sind. Sofern nicht anders angegeben (z.B. Wachstumsrate) entspricht die Angabe "Wachstum" einem Biomassezuwachs (= Yield). Der Endpunkt Wachstumsrate wurde gemäss TGD for EQS bei Algen/Cyanobakterien dem Endpunkt Biomasse vorgezogen. Liegen für einen Endpunkt ein EC10 und ein NOEC vor, wird der verlässlichere Wert bevorzugt (z.B. NOEC vor EC10 bei einer schlechten Übereinstimmung der Messdaten mit der Regressionskurve). Lässt sich die Verlässlichkeit nicht abschätzen, oder erscheint sie vergleichbar, wird der niedrigere Wert bevorzugt. Wo bekannt, wurde mit angegeben, ob sich Werte auf die gemessene oder auf die nominale Konzentration beziehen. Der derzeitig anerkannte Speziesname wurde angegeben und der in der Studie verwendete Name wurde in Klammern angegeben. Wenn mehrere Werte für die gleiche Art, Endpunkt und Dauer vorhanden waren, wurde das geometrische Mittel aus diesen Werten (fett eingerahmt) berechnet.

^a Für Validität wird nach der CRED-Methode Verlässlichkeit (R; Engl. *Reliability*) und Relevanz (C; Engl. *Relevance*) bewertet. Beide werden in Übereinstimmung mit der Klimisch Methode in folgende Kategorien eingeteilt: R1/C1= Zuverlässig/Relevant ohne Einschränkung; R2/C2 = Zuverlässig/Relevant mit Einschränkung; R3/C3 = nicht Zuverlässig/Relevant; R4/C4 = nicht bewertbar. Nicht relevante Effektwerte (C3) wurden im allgemeinen nicht mehr hinsichtlich ihrer Zuverlässigkeit bewertet.

EFFEKTDATENRECHERECHE										
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimen- sion	Para- meter	Opera- tor	Wert [µg/L]	Notiz	Validität	Literaturquelle
akute Effektdaten limnisch										
Bakterien	Pseudomonas putida	Reproduktion	18	h	EC50	=	58600	Α	1	Bruns & Knacker, 1998
Cyanobakterien	Anabaena inaequalis	Wachstum	24	h	EC50	=	182400		3	Mostafa & Helling, 2001
Cyanobakterien	Anabaena inaequalis	Wachstum	48	h	EC50	=	5790		3	Mostafa & Helling, 2001
Cyanobakterien	Anabaena inaequalis	Wachstum	72	h	EC50	=	800		3	Mostafa & Helling, 2001
Cyanobakterien	Anabaena inaequalis	Wachstum	96	h	EC50	=	210		3	Mostafa & Helling, 2001
Ciliaten	Tetrahymena pyriformis	Wachstumsrate	72	h	EC50	>	1100		2	Traunspurger et al., 1996
Algen	Periphyton	Photosyntheseaktivität	1	h	EC50	=	11.3		4	Gustavson et al., 2003
Algen	Periphyton	Photosyntheseaktivität	24	h	EC50	=	0.53-1.74		4	Gustavson et al. 2003
Algen	Achnanthidium minutissimum (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	173	E, S	R4, C2	Larras et al. 2013
Algen	Achnanthidium minutissimum (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	365	E, S	R4, C2	Larras et al. 2013
Algen	Chlamydomonas reinhardtii	Wachstum	72	h	EC50	=	40.0	В	2	Traunspurger et al., 1996
Algen	Chlamydomonas reinhardtii	Wachstum	72	h	EC50	=	43.25	С	2	Bi et al. 2012
		Geometrisches Mittel	72	h	EC50	=	<u>41.6</u>			
Algen	Chlorella kesslerei	Wachstum	24	h	EC50	=	8340		3	Mostafa & Helling, 2001
Algen	Chlorella kesslerei	Wachstum	48	h	EC50	=	580		3	Mostafa & Helling, 2001
Algen	Chlorella kesslerei	Wachstum	72	h	EC50	=	110		3	Mostafa & Helling, 2001
Algen	Chlorella kesslerei	Wachstum	96	h	EC50	=	50.0		3	Mostafa & Helling, 2001
Algen	Chlorella kessleri	Wachstum	72	h	EC50	=	<u>54.0</u>	В	2	Pavlic et al., 2006
Algen	Chlorella kessleri	Wachstum	72	h	EC50	=	60.0		3	Pavlic et al., 2006
Algen	Chlorella pyrenoidosa	Wachstum	96	h	EC50	<	25.0		4	Pavlic et al., 2006
Algen	Chlorella vulgaris	Wachstumsrate	48	h	EC50	=	<u>19.0</u>	B, V	R2, C1	Rioboo et al., 2002
Algen	Chlorella vulgaris	Wachstumsrate	96	h	EC50	=	41.1	B, V	R3, C1	Rioboo et al., 2002
Algen	Craticula accomoda (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	853	E, S	R4, C2	Larras et al. 2013
Algen	Craticula accomoda (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	1477	E, S	R4, C2	Larras et al. 2013
Algen	Cyclotella meneghiniana (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	46	E, S	R4, C2	Larras et al. 2013
Algen	Cyclotella meneghiniana (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	51	E, S	R4, C2	Larras et al. 2013
Algen	Desmodesmus subspicatus (Scenedesmus subspicatus)	Zellvermehrung	96	h	EC50	=	21.0	С	4	Kirby & Sheahan, 1994. Neubewertung in EC (2014), Annex B.9, S. 84
Algen	Desmodesmus subspicatus	Keine Angabe	96	h	EC50	=	21.0		4	Agritox, 2012
Algen	Desmodesmus subspicatus	Wachstum ^b	72	h	EC50	=	27.0	В	2	Pavlic et al., 2006
Algen	Desmodesmus subspicatus	Biomasse	72	h	LC50	=	30.0	D	3	Grunert, 1992, zitiert in EC Monograph, 1999. Neubewertung EC (2014), Annex B.9, S. 45
Algen	Desmodesmus subspicatus	Keine Angabe	72	h	EC50	=	30.0		4	Agritox, 2012
Algen	Desmodesmus subspicatus	Wachstum	72	h	EC50	=	33.0		3	Pavlic et al., 2006

^b Unklar, ob für Wachstumsrate oder Biomasse angegeben. Daher auch nicht zur Berechnung des geometrischen Mittelwertes herangezogen.

	EFFEKTDATENRECHERECHE									
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimen- sion	Para- meter	Opera- tor	Wert [µg/L]	Notiz	Validität	Literaturquelle
Algen	Desmodesmus subspicatus	Wachstum	120	h	EC50		80.0		4	GSBL, 2012, zitiert in ETOX, 2012
Algen	Desmodesmus subspicatus	Wachstumsrate	72	h	LC50	=	95.0	D	3	Grunert, 1992, zitiert in (EC Monograph, 1999. Neubewertung EC (2014), Annex B.9, S. 45
Algen	Desmodesmus subspicatus	Wachstum	72	h	EC50	=	12-15		2	Traunspurger et al., 1996
Algen	Desmodesmus subspicatus	Wachstumsrate	72	h	EC50	=	115	В, S	R4, C1 ^c	Weber <i>et al.</i> 2012, auch zitiert in EC (2014), Annex B.9, S. 68
Algen	Desmodesmus subspicatus	Wachstumsrate	72	h	EC50	=	<u>169</u>		2	Masojídek <i>et al.</i> 2011
Algen	Encyonema silesiacum (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	44	E, S	R4, C2	Larras et al. 2013
Algen	Encyonema silesiacum (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	769	E, S	R4, C2	Larras et al. 2013
Algen	Gomphonema parvulum (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	1014	E, S	R4, C2	Larras et al. 2013
Algen	Gomphonema parvulum (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	21734	E, S	R4, C2	Larras et al. 2013
Algen	Gomphonema clavatum (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	1072	E, S	R4, C2	Larras et al. 2014
Algen	Fistulifera saprophilia (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	151	E, S	R4, C2	Larras et al. 2014
Algen	Fragilaria capucina var vaucheriae (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	117	E, S	R4, C2	Larras <i>et al.</i> 2013
Algen	Fragilaria capucina var vaucheriae (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	584	E, S	R4, C2	Larras <i>et al.</i> 2013
Algen	Fragilaria crotonensis (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	169	E, S	R4, C2	Larras et al. 2014
Algen	Ulnaria ulna (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	74	E, S	R4, C2	Larras <i>et al.</i> 2013
Algen	Ulnaria ulna (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	132	E, S	R4, C2	Larras <i>et al.</i> 2013
Algen	Fragilaria rumpens (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	357	E, S	R4, C2	Larras et al. 2012
Algen	Fragilaria rumpens (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	155	E, S	R4, C2	Larras et al. 2012
Algen	Mayamaea fossalis (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	1664	E, S	R4, C2	Larras et al. 2012
Algen	Mayamaea fossalis (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	502	E, S	R4, C2	Larras et al. 2012
Algen	Navicula pelliculosa	Biomasse	72	h	EC50	=	13	D	1	Hoberg, 1998b, zitiert in EC Monograph, 1999 und in EC (2014), Annex B.9, S. 71.
Algen	Navicula pelliculosa	Wachstumsrate	72	h	EC50	=	<u>46</u>	D	1	Hoberg, 1998b, zitiert in EC Monograph, 1999 und in EC

^c In RAR (EC 2014) bewertet als "additional information", da nicht GLP und Validitätskriterien nicht überprüfbar. Die hier gelisteten Werte stammen aber aus dem Standard OECD Test, und nicht, wie im RAR (Tabelle B.9.2-63) angegeben, auf den Test im Durchflusssystem. Die Studie wurde daher erneut mit CRED bewertet. Die Autoren berichten, dass für den Standard-Test alle Validitätskriterien nach OECD refüllt waren. Jedoch sind keine Effektdaten gezeigt. Effektkonzentrationen basieren auf nominalen Konzentrationen und es ist nicht klar, ob Experimente repliziert wurden. Wert daher als R4 evaluiert.

		EFFE	KTDATEN	RECHERE	CHE					
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimen- sion	Para- meter	Opera- tor	Wert [µg/L]	Notiz	Validität	Literaturquelle
										(2014), Annex B.9, S. 71.
Algen	Navicula pelliculosa	Wachstumsrate	72	h	EC50	=	60		3	Dengler 2001, zitiert in EC (2014) Annex B.9, S. 49
Algen	Nitzschia palea (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	1577	E, S	R4, C2	Larras et al. 2012
Algen	Nitzschia palea (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	1787	E, S	R4, C2	Larras et al. 2012
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	keine Angabe	72	h	LC50	=	72.0	D	3	Schoot Uiterkamp, 1988c, zitiert in EC Monograph, 1999. Neubewertung EC (2014), Annex B.9, S. 45
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate	72	h	LC50	=	148.0	D	3	Knight & Buchanan, 1997, zitiert in EC Monograph, 1999. Neubewertung EC (2014), Annex B.9, S. 46
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Biomasse	72	h	LC50	=	35.0	D	3	Knight & Buchanan, 1997, zitiert in EC Monograph, 1999. Neubewertung EC (2014), Annex B.9, S. 46
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate	72	h	EC50	=	128	B, S	R4, C1	Weber <i>et al.</i> 2012, auch zitiert in EC (2014), Annex B.9, S. 68
Algen	Raphidocelis subcapitata (Pseudokirchneriella subcapitata)	Wachstumsrate	72	h	EC50	=	98	A, S	1	Scheerbaum 2002, zitiert in EC (2014), Annex B.9, S. 46
	Raphidocelis subcapitata	Wachstum								Scheerbaum (2002), zitiert in EC
Algen	(Pseudokirchneriella subcapitata) Ranhidocelis subcapitata	Biomasse	12	n	EC.50	=	25	А, 5	1	(2014), Annex B.9, S. 46
Algon	(Pseudokirchneriella subcapitata)	(area under growth-curve)	72	h	EC50	=	41	в	2	Pavlic <i>et al.</i> , 2006
	Raphidocelis subcapitata							_		
Algen	(Pseudokirchneriella subcapitata)	Wachstum	72	h	EC50	=	49.5	В	2	Bi Fai <i>et al.</i> , 2007
Almen	Dankida aslia aukaanitata	Geometrisches Mittel	72	n	EC50	=	28.8	D V V		Ma -4 -4 0000
Algen	Sconodosmus obliguus	Zolltoilung	96	n b	EC50	-	13.6	B, V, X	2	Ma et al., 2006
Algen	Scenedesmus obliquus	Photosynthese (Ф.).d	24	h	EC50	_	30.0	B K	2	Dewez et al., 2000
Algen	Scenedesmus obliquus	Photosynthese (q _m) ^e	24	h	EC50	=	85.0	B K	2	Dewez et al. 2008
Algen	Scenedesmus obliquus	Photosynthese (q _p) [†]	24	h	EC50	=	144.0	B, K	2	Dewez et al., 2008
Algen	Scenedesmus obliguus	Photosynthese (ABS/RC) ^g	24	h	EC50	=	165.0	B, K	2	Dewez et al., 2008
Algen	Scenedesmus obliguus	Photosynthese (UQF _{rol}) ^h	24	h	EC50	=	8.0	B. K	2	Dewez et al., 2008
Algen	Scenedesmus quadricauda	Wachstum	96	h	EC50	=	21.0	B, V	2	Ma et al., 2003
Algen	Scenedesmus vacuolatus	Wachstumsrate	72	h	EC50	=	120.0	Ċ	2	Vallotton et al., 2008
Algen	Scenedesmus vacuolatus	Wachstumsrate	48	h	EC50	=	29.0		4	Schmitt-Jansen et al., 2004
Algen	Scenedesmus vacuolatus	Wachstum	72	h	EC50	=	77.0	С	2	Nitschke et al., 1999
Algen	Scenedesmus vacuolatus	Reproduktion	24	h	EC50	=	47.1	С, К	2	Backhaus et al., 2004
Algen	Sellaphora minima	Wachstum (basierend auf	96	h	EC50	=	1566	E, S	R4, C2	Larras et al. 2013

^d ΦM' -> Die Veränderung der effektiven PSII-Quantenausbeute ^e *qp* -> Die Ableitung der durch den photochemischen Prozess absorbierten Lichtenergie ^f qp(rel) -> Die durch den photochemischen Prozess absorbierte Lichtenergie ^g ABS/RC -> Die Effizienz des Energietransfers vom absorbiertem Licht bis zum PSII-Reaktionszentrum. ^h UQF(rel) -> Relativer ungequentschter Fluoreszenzparameter

		EFFEI	KTDATEN	RECHERE	CHE					
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimen- sion	Para- meter	Opera- tor	Wert [µg/L]	Notiz	Validität	Literaturquelle
	(planktonischer Modus)	Chlorophyll Fluoreszenz)								
Algen	Sellaphora minima (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC50	=	4155	E, S	R4, C2	Larras et al. 2013
Wasserpflanzen	Lemna minor	totales Chlorophyll	10	d	EC50	=	<u>31.0</u>	с	1	Kirby & Sheahan, 1994. Neubewertung in EC (2014), Annex B.9, S. 84
Wasserpflanzen	Lemna minor	Wachstum (Frondzahl)	7	d	EC50	=	60.0	С	2	Nitschke <i>et al.</i> , 1999
Wasserpflanzen	Lemna minor	Wachstum (Frondzahl)	7	d	EC50	=	160	C, R	R2, C1	Tunić <i>et al.</i> 2015
		Geometrisches Mittel	7	d	EC50	=	98			
Wasserpflanzen	Lemna minor	Wachstum (Nassgewicht)	7	d	EC50	=	80	C, R	R2, C1	Tunić <i>et al.</i> 2015
Wasserpflanzen	Lemna minor	Wachstum (Frondfläche)	7	d	EC50	=	140	C, R	R2, C1	Tunić <i>et al.</i> 2015
Wasserpflanzen	Lemna minor	Wachstumsrate (Frondzahl)	7	d	EC50	=	230	C, R	R2, C1	Tunić <i>et al.</i> 2015
Wasserpflanzen	Lemna minor	Wachstumsrate (Nassgewicht)	7	d	EC50	=	200	C, R	R2, C1	Tunić <i>et al.</i> 2015
Wasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	7	d	EC50	=	210	C, R	R2, C1	Tunić <i>et al.</i> 2015
Wasserpflanzen	Lemna gibba	Frondzahl	14	d	EC50	=	45.0	D	1	Hoberg, 1998a, zitiert in EC Monograph, 1999, Tab. B.8.2.1-1 auf S. 493
Wasserpflanzen	Lemna gibba	Biomasse	14	d	LC50	=	<u>37.0</u>	D	1	Hoberg, 1998a, zitiert in EC Monograph, 1999 Tab. B.8.2.1-1 auf S. 493
Wasserpflanzen	Lemna minor	Wachstum (Frondzahl und Frondgrösse)	14	d	EC50	=	120		R3, C1	Quadir and Rahman 2015
Wasserpflanzen	Myriophyllum aquaticum	Wachstum-Gesamtsprosslänge Testsystem mit Sediment	7	d	EC50	=	<u>320</u>	L (n=8)	1 ⁱ	Ratte and Ratte 2014
Wasserpflanzen	Myriophyllum aquaticum	Wachstum–Nassgewicht Testsystem mit Sediment	7	d	EC50	=	620	L, U (n=4)	3	Ratte and Ratte 2014
Wasserpflanzen	Myriophyllum aquaticum	Wachstum–Trockengewicht Testsystem mit Sediment	7	d	EC50	=	60	L, U (n=2)	3	Ratte and Ratte 2014
Wasserpflanzen	Myriophyllum aquaticum	Wachstumsrate- Gesamtsprosslänge Testsystem mit Sediment	7	d	EC50	=	470	L (n=8)	1'	Ratte and Ratte 2014
Wasserpflanzen	Myriophyllum aquaticum	Wachstumsrate-Nassgewicht Testsystem mit Sediment	7	d	EC50	=	770	L, U (n=4)	3	Ratte and Ratte 2014
Wasserpflanzen	Myriophyllum aquaticum	Wachstumsrate-Trockengewicht Testsystem mit Sediment	7	d	EC50	=	70	L, U (n=2)	3	Ratte and Ratte 2014
Wasserpflanzen	Myriopyllum spicatum	Photosyntheseaktivität	13	d	EC50	=	34	C, S	R2, C1	Riedl et al. 2015
Wasserpflanzen	Myriopyllum spicatum	Wachstum- Gesamtsprosslänge Testsystem mit Sediment	14	d	EC50	=	147	L (n=7)	1 ¹	Ratte and Ratte 2014
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Nassgewicht Testsystem mit Sediment	14	d	EC50	=	97	L (n=7)	1'	Ratte and Ratte 2014
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Trockengewicht	14	d	EC50	=	53	L (n=5)	1 ¹	Ratte and Ratte 2014

¹ Die Ringteststudie von Ratte und Ratte wurde vom Deutschen Umwelt-Bundesamt als valide eingestuft und u.a. bei der EQS-Herleitung für das H^j Die marinen Datenpunkte stammen zwar von der Europäischen Kommission (EC, 2003), die Originalquelle ist jedoch nicht eindeutig zuzuweisen. Zitat: "Transitional, coastal and territorial waters: Effect data for marine organisms are not provided in the risk assessment monograph of isoproturon as addressing the marine environment is normally not necessary in the context of the risk assessment for plant protection products. However, The Netherlands provided data of 3 shortterm tests with the marine species *Phaeodactylum tricornutum* (alga), *Crassostrea gigas* (mollusca) and *Psammechinus miliaris* (echinodermata). These data are presented in table 6.3 together with some further data sets on marine algae and the mollusc *Crassostrea gigas* retrieved from the ECOTOX database of the US-EPA. These data suggest that marine invertebrates and algae species are not more sensitive to isoproturon than freshwater taxa...^{*} Diese Daten aus der genannten Tabelle 6.3, wurden in diese Tabelle übertragen, jedoch mit Klimisch 4 bewertet, da unklar ist ob es sich bei den einzelnen Datenpunkten um solche aus der ETOX Datenbank handelt

		EFFE	KTDATEN	RECHERE	CHE					
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimen- sion	Para- meter	Opera- tor	Wert [µg/L]	Notiz	Validität	Literaturquelle
		Testsystem mit Sediment								
Wasserpflanzen	Myriopyllum spicatum	Wachstumsrate-Nassgewicht Testsystem mit Sediment	14	d	EC50	=	183	L (n=7)	1 ⁱ	Ratte and Ratte 2014
Wasserpflanzen	Myriopyllum spicatum	Wachstumsrate-Trockengewicht Testsystem mit Sediment	14	d	EC50	=	72	L (n=5)	1 ⁱ	Ratte and Ratte 2014
Wasserpflanzen	Myriopyllum spicatum	Wachstumsrate- Gesamtsprosslänge Testsystem mit Sediment	14	d	EC50	=	331	L (n=7)	1 ¹	Ratte and Ratte 2014
Wasserpflanzen	Myriopyllum spicatum	Wachstum-Seitenäste (total) Testsystem mit Sediment	14	d	EC50	=	108	L (n=6)	1'	Ratte and Ratte 2014
Wasserpflanzen	Myriopyllum spicatum	Anzahl Seitenäste Testsystem mit Sediment	14	d	EC50	=	338	L (n=6)	1	Ratte and Ratte 2014
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Nassgewicht Sedimentfreies Testsystem	14	d	EC50	=	530	C, R	2	Mohr <i>et al.</i> 2013
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Trockengewicht Sedimentfreies Testsystem	14	d	EC50	=	250	C, R	2	Mohr <i>et al.</i> 2013
Wasserpflanzen	Myriopyllum spicatum	Wachstum (Trockengewicht)	14	d	EC50	=	196	C, R	R2, C1	Riedl et al. 2015
		Geometrisches Mittel	7	d	EC50	=	221			
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Wurzellänge Sedimentfreies Testsystem	14	d	EC50	=	220	C, R	2	Mohr <i>et al.</i> 2013
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Gesamtsprosslänge Testsystem mit Sediment	14	d	EC50	=	200	C, R	2	Mohr <i>et al.</i> 2013
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Hauptsprosslänge Testsystem mit Sediment	14	d	EC50	=	260	C, R	2	Mohr <i>et al.</i> 2013
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Seitensprosslänge Testsystem mit Sediment	14	d	EC50	=	170	C, R	2	Mohr <i>et al.</i> 2013
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Nassgewicht Testsystem mit Sediment	14	d	EC50	=	260	C, R	2	Mohr <i>et al.</i> 2013
Krebstiere	Daphnia magna	Immobilisierung	24	h	EC50		5300		4	GSBL, 2012, zitiert in ETOX, 2012
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	>	1000		2	Traunspurger et al., 1996
Krobstiara	Danhnia magna	Mortalität	48	h	1.050		1000000		3	Knacker <i>et al.</i> , 1989, zitiert in ZC Monograph, 1999, Tab. B.8.2.1-1
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	=	<u>580</u>	с	1	Vial, 1989, zitiert in EC Monograph, 1999. Neubewertung in EC (2014), Annex B.9, S. 41
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC10	>	1000		2	Traunspurger et al., 1996
Krebstiere	Daphnia magna	Immobilisierung	48	h	NOEC	=	200000		3	Knacker <i>et al.</i> , 1989, zitiert in EC Monograph, 1999. Neubewertung Renewal Assessment Report 2014, , Annex B.9, S. 33
Krebstiere	Daphnia magna	Immobilisierung	48	h	NOEC	=	42300		1	Thun, 1992b, zitiert in EC Monograph, 1999
Krebstiere	Daphnia magna	Immobilisierung	48	h	NOEC	=	32000		3	Schoot Uiterkamp, 1988b, zitiert in EC Monograph, 1999. Neubewertung Renewal Assessment Report 2014 Annex

EFFEKTDATENRECHERECHE										
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimen- sion	Para- meter	Opera- tor	Wert [µg/L]	Notiz	Validität	Literaturquelle
										B.9, S. 33
Krebstiere	Daphnia magna	Immobilisierung	48	h	LOEC	=	70000		1	Thun, 1992a, zitiert in EC Monograph, 1999
Krebstiere	Daphnia magna	Mortalität	48	h	LC50	>	56000		3	Schoot Uiterkamp, 1988b, zitiert in EC Monograph, 1999. Neubewertung Renewal Assessment Report 2014, Annex B.9, S. 33
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	>	68000	А	1	Noack 2002, zitiert in Renewal Assessment Report 2014, EC 2014, Annex B.9, S. 33
Krebstiere	Daphnia magna	Immobilisierung	48	h	NOEC	=	33500	А	1	Noack 2002, zitiert in Renewal Assessment Report 2014, EC 2014, Annex B.9, S. 33
Fische	Cyprinus carpio	Mortalität	96	h	LC50	=	54400	D	1	Peters, 1993, zitiert in EC Monograph, 1999, Tab. B.8.2.1- 1 auf S. 493
Fische	Cyprinus carpio	Mortalität	96	h	LC50	=	41000	Α	1	Anonym (2002) Zitiert in EC (2014), Annex B.9, S. 25
		Geometrisches Mittel	96	h	LC50	=	<u>47227</u>			
Fische	Danio rerio	Keine Angabe	96	h	LC50	=	40000	D	3	Schoot Uiterkamp, 1988a, zitiert in EC Monograph, 1999. Neubewertung Renewal Assessment Report 2014, Annex B.9. S. 24
Fische	lctalurus punctatus	Mortalität	96	h	LC50	=	9000		4	zitiert in Greulich et al. 2002
Fische	Leuciscus idus	Keine Angabe	96	h	LC50	=	18000		4	Agritox, 2011
Fische	Leuciscus idus melanotus	Mortalität	96	h	NOEC	=	18000		1	Thun, 1992c, zitiert in EC Monograph, 1999, Tab. B.8.2.1-1 auf S. 493
Fische	Leuciscus idus melanotus	Mortalität	96	h	LOEC	=	25500		1	Thun, 1992c, zitiert in EC Monograph, 1999, Tab. B.8.2.1-1 auf S. 493
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	=	37000		4	zitiert in Greulich et al. 2005
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	>	18000		1	Handley <i>et al.</i> , 1991, zitiert in EC Monograph, 1999, Tab. B.8.2.1-1 auf S. 493 und in EC (2014) Annex B.9, S. 31
Fische	Oncorhynchus mykiss	Keine Angabe	96	h	NOEC	=	9500		1	Ritter, 1989, zitiert in EC Monograph, 1999, Tab. B.8.2.1-1 auf S. 493
Fische	Oncorhynchus mykiss	Keine Angabe	96	h	LOEC	=	17100		1	Ritter, 1989, zitiert in EC Monograph, 1999, Tab. B.8.2.1-1 auf S. 493
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	=	<u>37220</u>	D	1	Ritter, 1989, zitiert in EC Monograph, 1999, Tab. B.8.2.1-1 auf S. 493
Fische	Poecilia reticulata	Mortalität	96	h	LC50	=	90000		4	GSBL, 2012, zitiert in ETOX, 2012
Fische	Poecilia reticulata	Keine Angabe	96	h	LC50	=	<u>52000</u>	D	1	Katdare, 1991, zitiert in EC Monograph, 1999, Tab. B.8.2.1-1

		EFFE	KTDATENI	RECHERE	CHE					
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimen- sion	Para- meter	Opera- tor	Wert [µg/L]	Notiz	Validität	Literaturquelle
										auf S. 493
Fadenwurm	Caenorhabditis elegans	Wachstum	96	h	EC50	>	810.0		2	Traunspurger et al., 1996
Fadenwurm	Caenorhabditis elegans	Wachstum	96	h	EC10	>	810.0		2	Traunspurger et al., 1996
Amphibien	Bombina variegata	Immobilisierung	24	h	NOEC	=	0.1	Y	3	Greulich et al., 2002
Amphibien	Bombina variegata	Immobilisierung	24	h	LOEC	=	1.0		3	Greulich et al. 2002
		akı	ite Effekto	laten mari	n ^j					•
Algen	Phaeodactylum tricornutum	Wachstumsrate	96	h	EC50	≥	10.0		4	EC, 2005
Algen	Isochrysis galbana	Wachstum	21	d	EC50	=	17.0		4	His & Seaman, 1993
Algen	Chaetoceros calcitrans	Wachstum	21	d	EC50	=	78.0		4	His & Seaman, 1993
Mollusken	Crassostrea gigas	Larvenentwicklung	48	h	NOEC	=	98		4	EC, 2005
Mollusken	Crassostrea gigas	Larvenentwicklung	48	h	LOEC	=	150		4	EC, 2005
Mollusken	Crassostrea gigas	Larvenentwicklung	48	h	EC10	≥	520		4	EC, 2005
Mollusken	Crassostrea gigas	Larvenentwicklung	48	h	EC50	>	520.0		4	EC, 2005
Mollusken	Crassostrea gigas	Mortalität	9	d	LC50	=	370.0		4	EC, 2005
Stachelhäuter	Psammechinus miliaris	Larvenentwicklung	48	h	EC50	>	555.0		4	EC, 2005
Stachelhäuter	Psammechinus miliaris	Larvenentwicklung	48	h	NOEC	=	310.0		4	EC, 2005
Stachelhäuter	Psammechinus miliaris	Larvenentwicklung	48	h	EC10	=	503.0		4	EC, 2005
	•	subchronische	und chro	nische Da	aten limnis	sch			·	
Bakterien	Pseudomonas putida	Reproduktion	18	h	NOEC	=	35000		1	Bruns & Knacker, 1998
Bakterien	Pseudomonas putida	Reproduktion	18	h	EC10	=	44100		1	Bruns & Knacker, 1998
Cyanobakterien	Anabaena inaequalis	Wachstum	24	h	EC10	=	1280		3	Mostafa & Helling, 2001
Cyanobakterien	Anabaena inaequalis	Wachstum	48	h	EC10	=	10.0		3	Mostafa & Helling 2001
Cyanobakterien	Anabaena inaequalis	Wachstum	72	h	EC10	=	10.0		3	Mostafa & Helling 2001
Cyanobakterien	Anabaena inaequalis	Wachstum	96	h	EC10	=	10.0		3	Mostafa & Helling 2001
Ciliaten	Tetrahymena pyriformis	Wachstumsrate	72	h	EC10	=	700		2	Traunspurger et al., 1996
Algen	Algengemeinschaft (Periphyton)	Photosyntheseaktivität	1	h	NOEC	=	0.1		4	Gustavson et al. 2003
Algen	Algengemeinschaft (Periphyton)	Photosyntheseaktivität	24	h	LOEC	=	0.400		4	Gustavson et al. 2003
Algen	Achnanthidium minutissimum (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	30	E, S	R4, C2	Larras <i>et al.</i> 2013
Algen	Achnanthidium minutissimum (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	177	E, S	R4, C2	Larras et al. 2013
Algen	Chlamydomonas reinhardtii	Wachstum	72	h	EC10	=	<u>13.0</u>	В	2	Traunspurger et al., 1996
Algen	Chlorella kesslerei	Wachstum	24	h	EC10	=	0.3		3	Mostafa & Helling 2001
Algen	Chlorella kesslerei	Wachstum	48	h	EC10	=	0.001		3	Mostafa & Helling 2001
Algen	Chlorella kesslerei	Wachstum	72	h	EC10	=	0.2		3	Mostafa & Helling 2001
Algen	Chlorella kesslerei	Wachstum	96	h	EC10	=	4.0		3	Mostafa & Helling 2001
Algen	Craticula accomoda (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	336	E, S	R4, C2	Larras et al. 2013
Algen	Craticula accomoda (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	177	E, S	R4, C2	Larras et al. 2013
Algen	Cyclotella meneghiniana	Wachstum (basierend auf	96	h	EC10	=	4.67	E, S	R4, C2	Larras et al. 2013

^j Die marinen Datenpunkte stammen zwar von der Europäischen Kommission (EC, 2003), die Originalquelle ist jedoch nicht eindeutig zuzuweisen. Zitat: "Transitional, coastal and territorial waters: Effect data for marine organisms are not provided in the risk assessment monograph of isoproturon as addressing the marine environment is normally not necessary in the context of the risk assessment for plant protection products. However, The Netherlands provided data of 3 shortterm tests with the marine species *Phaeodactylum tricornutum* (alga), *Crassostrea gigas* (mollusca) and *Psammechinus miliaris* (echinodermata). These data are presented in table 6.3 together with some further data sets on marine algae and the mollusc *Crassostrea gigas* retrieved from the ECOTOX database of the US-EPA. These data suggest that marine invertebrates and algae species are not more sensitive to isoproturon than freshwater taxa..." Diese Daten aus der genannten Tabelle 6.3, wurden in diese Tabelle übertragen, jedoch mit Klimisch 4 bewertet, da unklar ist ob es sich bei den einzelnen Datenpunkten um solche von der Niederlande oder um solche aus der ETOX Datenbank handelt

		EFFE	KTDATENI	RECHERE	CHE					
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimen- sion	Para- meter	Opera- tor	Wert [µg/L]	Notiz	Validität	Literaturquelle
	(planktonischer Modus)	Chlorophyll Fluoreszenz)								
Algen	Cyclotella meneghiniana (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	36	E, S	R4, C2	Larras et al. 2013
Algen	Desmodesmus subspicatus	Wachstum	72	h	NOEC	=	8.0		4	GSBL, 2012, zitiert in ETOX, 2012
Algen	Desmodesmus subspicatus	Wachstum	72	h	EC10	=	<u>8.0</u>	В	2	Traunspurger et al., 1996
Algen	Desmodesmus subspicatus	Biomasse	72	h	EC10	=	5.0		4	Umweltbundesamt, 2011
Algen	Desmodesmus subspicatus	Wachstum	72	h	NOEC	=	3.2	D	3	Fischer, 1986, zitiert in EC Monograph, 1999. Neubewertung EC (2014), Annex B.9, S. 44
Algen	Desmodesmus subspicatus	Wachstum	72	h	EC10	=	17.0		4	Umweltbundesamt 2011
Algen	Desmodesmus subspicatus	Wachstum	72	h	EC10	=	5.0		4	Umweltbundesamt 2011
Algen	Encyonema silesiacum (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	13	E, S	R4, C2	Larras et al. 2013
Algen	Encyonema silesiacum (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	17	E, S	R4, C2	Larras et al. 2013
Algen	Gomphonema parvulum (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	682	E, S	R4, C2	Larras et al. 2013
Algen	Gomphonema parvulum (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	735	E, S	R4, C2	Larras et al. 2013
Algen	Gomphonema clavatum (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	697	E, S	R4, C2	Larras et al. 2014
Algen	<i>Fistulifera saprophilia</i> (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	17	E, S	R4, C2	Larras et al. 2014
Algen	Fragilaria capucina var vaucheriae (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	38	E, S	R4, C2	Larras <i>et al.</i> 2013
Algen	Fragilaria capucina var vaucheriae (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	270	E, S	R4, C2	Larras et al. 2013
Algen	<i>Ulnaria ulna</i> (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	34	E, S	R4, C2	Larras et al. 2013
Algen	<i>Ulnaria ulna</i> (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	58	E, S	R4, C2	Larras et al. 2013
Algen	Fragilaria crotonensis (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	0.21	E, S	R4, C2	Larras <i>et al.</i> 2014
Algen	Fragilaria rumpens (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	51	E, S	R4, C2	Larras <i>et al.</i> 2013
Algen	Fragilaria rumpens (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	43	E, S	R4, C2	Larras et al. 2013
Algen	Mayamaea fossalis (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	615	E, S	R4, C2	Larras et al. 2013
Algen	Mayamaea fossalis (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	275	E, S	R4, C2	Larras et al. 2013
Algen	Navicula pelliculosa	Biomasse	72	h	NOEC	=	2.5	D	1	Hoberg, 1998b, zitiert in EC (2014),Annex B.9, S. 71
Algen	Navicula pelliculosa	Wachstumsrate	72	h	NOEC	=	<u>6.4</u>	D	1	Hoberg, 1998b, zitiert in EC (2014), Annex B.9, S. 71
Algen	Nitzschia palea (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	345	E, S	R4, C2	Larras et al. 2013

SamelbacichungOrganissusEndquarkDadeDimePareOpen- nedeOpen- lightOpen- lig			EFFEI	KTDATEN	RECHERE	CHE					
Algen Nitzscha pake (berthischer Modus) Wachstum (basierend auf Chlorophyll Fluoreszen) 96 h EC10 a 180 E.S R4, C2 Larras et al. 2013 Algen Pseudokirchneriella subcapitata Wachstum rate 72 h NOEC a 10.0 D 30 Mingte Al. 2013 Algen Scenedesmus vacuolatus Wachstum 72 h EC10 a 23.0 C 2 Nitzsche al. 2013 Nitzsche al. 2014 Algen Scenedesmus vacuolatus Reproduktion 24 h NOEC a 4.8 C, K, S 2 Backhaus et al. 2014 Algen (parkitonischer Modus) Reproduktion 24 h EC10 a 1052 E.S R4, C2 Larras et al. 2013 Algen (parkitonischer Modus) Chlorophyll Fluoreszon) 96 h EC10 a 1052 E.S R4, C2 Larras et al. 2013 Wasserpflanzen Lenna minor Frondzhl 7 d EC10 a 1052 <th>Sammelbezeichnung</th> <th>Organismus</th> <th>Endpunkt</th> <th>Dauer</th> <th>Dimen- sion</th> <th>Para- meter</th> <th>Opera- tor</th> <th>Wert [µg/L]</th> <th>Notiz</th> <th>Validität</th> <th>Literaturquelle</th>	Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimen- sion	Para- meter	Opera- tor	Wert [µg/L]	Notiz	Validität	Literaturquelle
Algen Pseudok/rchnerkela subcapitata Wachstummate 72 h NOEC a Intight & Buchann, 1997, EC Monophy, 1999, Neubowertung in EC (2014),	Algen	<i>Nitzschia palea</i> (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	180	E, S	R4, C2	Larras et al. 2013
Algen Scenedosmus vacuolatus Wachstum 72 h NCC 2 Nitschwe ral. 1999 Algen Scenedosmus vacuolatus Reproduktion 24 h NCC = 28.0 C 2 Nitschwe ral. 1999 Algen Scenedosmus vacuolatus Reproduktion 244 h NOEC = 5.0 C 1.0 C 2 Backhaus et al. 2004 Algen Scenedosmus vacuolatus Reproduktion 244 h NCC = 1.00 C 2 Backhaus et al. 2013 Massenflanzen Lenne minor Frontilister 7 d EC50 = 1.80 C 2 Decort et al. 2013 Wessenflanzen Lemma minor Frontilisterun 21 d NOEC = 93.0 4 2012 Krebstiere Daphnia magna Reproduktion 21 d NOEC = 93.0 4 2012 Krebstiere Daphnia magna Reproduktion 21	Algen	Pseudokirchneriella subcapitata	Wachstumsrate	72	h	NOEC	=	10.0	D	3	Knight & Buchanan, 1997, EC Monograph, 1999. Neubewertung in EC (2014), Annex B.9, S. 46
Algen Scenedesmu vacuolatus Reproduction 24 h NOEC = 4.8 C, K, S 2 Backhaus et al., 2004 Algen Sellaphone minima (plentinecher Motus) Wachstum (basilerend auf) (plentinecher Motus) Wachstum (basilerend auf) (plentinecher Motus) 96 h Ec10 = 1092 E, S R4, C2 Larras et al., 2013 Algen (benthischer Motus) Wachstum (basilerend auf) (benthischer Motus) Yeinessenang 96 h Ec10 = 1374 E, S R4, C2 Larras et al., 2013 Wasserpflanzen Lenna minor Frondfläche 42 d EC50 > 100 C 2 Boxal et al., 2013 Krebstiere Daphnia magna Immobilisierung 21 d NOEC = 8900 4 2012 2	Algen	Scenedesmus vacuolatus	Wachstum	72	h	EC10	=	<u>29.0</u>	С	2	Nitschke <i>et al.</i> 1999
Algen Scoredesimis vacuolatus Reproduction 24 n EC10 = 8.22 C, M, K, S 2 Backhaus et al., 2004 Algen (planikonischer Modus) Wachstum (planikonischer Modus) Maintum (planikonischer Modus) Planikonischer Modus) Planikonischer Modus) E.S R4, C2 Larras et al. 2013 Wasserpflanzen Lemma minor Frondball 7 d EC10 = 1374 E.S R4, C2 Larras et al. 2013 Wasserpflanzen Lemma minor Frondball 7 d EC10 = 18.0 C 2 Nischke et al., 1999 Wasserpflanzen Lemma minor Frondball 7 d NOEC 9900 4 2012 Krebstiere Daphnia magna Reproduktion 21 d NOEC 93.0 4 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012	Algen Scenedesmus vacuolatus		Reproduktion	24	h	NOEC	=	4.8	C, K, S	2	Backhaus et al., 2004
Algen (plantknin)ckar Modus) Wachstern (basieren auf (blanktnin)ckar Modus) 96 h EC10 = 1062 E, S R4, C2 Larras et al. 2013 Algen Sellaphora minina (blanktnin)ckar Modus) Chiorophyl Pincerszon2 96 h EC10 = 1062 E, S R4, C2 Larras et al. 2013 Wasserpflanzen Lemma minor Prontbahl 7 d EC10 = 1082 C 2 Witche et al. 1999 Wasserpflanzen Lemma minor Prontbahl 7 d EC10 = 100 C 2 Boxall et al. 2013 Wasserpflanzen Lemma minor Prontbahl 7 d EC10 = 100 C 2 Boxall et al. 2013 Zuits in ter 2013 Krebstiere Daphnia magna Reproduktion 21 d NDEC = 93.0 4 2012 Zuits in EC Modus Krebstiere Daphnia magna Reproduktion 21 d NDEC 2 0 3 <	Algen	Scenedesmus vacuolatus	Reproduktion	24	h	EC10	=	<u>8.9*</u>	C, M, K, S	2	Backhaus <i>et al.</i> , 2004
Algen Sellaphora minima (benthischer Modus) Wasserpflanzen E, S R4, C2 Larras et al. 2013 Wasserpflanzen Lemna minor Frondzahl 7 d EC10 = 1374 E, S R4, C2 Larras et al. 2013 Wasserpflanzen Lemna minor Frondzahl 7 d EC10 = 18.0 C 2 Nitschke et al., 1999 Wasserpflanzen Lemna minor Frondzahl 42 d EC50 = 18.0 C 2 Nitschke et al., 1999 Krebstiere Daphnia magna Raproduktion 21 d NOEC = 93.0 4 2012 Krebstiere Daphnia magna Raproduktion 21 d NOEC = 32.0 4 2012 Krebstiere Daphnia magna Raproduktion 21 d NOEC = 32.0 4 2012 Krebstiere Daphnia magna Raproduktion 21 d NOEC 410 1 Monograp	Algen	Sellaphora minima (planktonischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	<u>1062</u>	E, S	R4, C2	Larras et al. 2013
Wasserpflazen Lenna minor Frondzahl 7 d EC10 = 13.0 C 2 Nitsche er al., 1999 Wasserpflazen Lenna minor Frondfläche 42 d EC10 = 13.0 C 2 Nitsche er al., 1999 Wasserpflazen Daphnia magna Immobilisierung 21 d NOEC = 9900 4 2012 CSBL, 2012, zitlert in ETOX, 2017 Krebstiere Daphnia magna Reproduktion 21 d NOEC = 93.0 4 2012 Krebstiere Daphnia magna Reproduktion 21 d NOEC = 410 4 2012 Krebstiere Daphnia magna Reproduktion 21 d NOEC = 410 1 Monograph, 1999 Krebstiere Daphnia magna Reproduktion 21 d NOEC 410 1 Monograph, 1999, 2101, 116 C Notiche, 199, 2101, 116 C Notiche, 199, 2101, 116 C 100 3 Annex 8, 8, 42	Algen	Sellaphora minima (benthischer Modus)	Wachstum (basierend auf Chlorophyll Fluoreszenz)	96	h	EC10	=	1374	E, S	R4, C2	Larras et al. 2013
Wasserpflanzen Lemma minor Frondfläche 42 d ECS0 > 100 2 Boxall et al. 2013 Krebstiere Daphnia magna Immobilisierung 21 d NOEC = 8900 4 2012 Zührt in ETOX, 2012 Krebstiere Daphnia magna Reproduktion 21 d NOEC = 93.0 4 2012 Zührt in ETOX, 2012 Zührt in EC Mongraph, 1999 Zührt in EC Mongraph, 1999 Zührt in EC Mongraph, 1999 Zührt in EC Mongraph, 1999, Zührt in EC Mongraph, 1999, Zührt in EC Mongraph	Wasserpflanzen	Lemna minor	Frondzahl	7	d	EC10	=	<u>18.0</u>	С	2	Nitschke et al., 1999
KrebstiereDaphnia magnaImmobilisierung21dNOEC=89004GSBL, 2012, zitiert in ETOX, 2012KrebstiereDaphnia magnaReproduktion21dNOEC=93.04GSBL, 2012, zitiert in ETOX, 2012KrebstiereDaphnia magnaReproduktion21dNOEC=41042012KrebstiereDaphnia magnaReproduktion21dLOEC=32042012KrebstiereDaphnia magnaReproduktion21dLOEC=32042012KrebstiereDaphnia magnaReproduktion21dNOEC=4101Monograph, 1992, zitlert in ETOX, 2012KrebstiereDaphnia magnaReproduktion21dNOEC=4101Monograph, 1992, zitlert in EC Monograph, 1999, sitlert in EC Monograph, 1999, sitler i	Wasserpflanzen	Lemna minor	Frondfläche	42	d	EC50	>	100		2	Boxall et al. 2013
DescriptionDeprint magnaReproduktion21dNOEC=93.04201220	Krebstiere	Daphnia magna	Immobilisierung	21	d	NOEC	=	8900		4	GSBL, 2012, zitiert in ETOX, 2012
KrebstiereDaphnia magnaReproduktion21dNOEC=93.042012KrebstiereDaphnia magnaReproduktion21dNOEC=4104C9SH_2012, zitiert in ETOX, 2012, zitiert in ETOX, 2012KrebstiereDaphnia magnaReproduktion21dLOEC=32042012KrebstiereDaphnia magnaReproduktion21dLOEC=32042012KrebstiereDaphnia magnaReproduktion21dNOEC<	10000000										GSBL. 2012. zitiert in ETOX.
KrebstiereDaphnia magnaReproduktion21dNOEC=4104GSBL, 2012, zitiert in ETOX, 2012, zitiert in ETOX, 2012, zitiert in ETOX, 2012, zitiert in ECOX, 2012KrebstiereDaphnia magnaReproduktion21dLOEC=32042012KrebstiereDaphnia magnaReproduktion21dNOEC<4101Monograph, 1992, zitiert in ECKrebstiereDaphnia magnaReproduktion21dNOEC<4101Monograph, 1992, zitiert in ECKrebstiereDaphnia magnaReproduktion21dNOEC=100D3Annex B.9, S.42KrebstiereDaphnia magnaReproduktion21dNOEC=10.0D3Annex B.9, S.42KrebstiereDaphnia magnaReproduktion21dNOEC=10.0D3Annex B.9, S.42KrebstiereDaphnia magnaReproduktion21dNOEC=10.0D3Annex B.9, S.42KrebstiereDaphnia magnaMortalität21dNOEC=8000D3Annex B.9, S.42KrebstiereDaphnia magnaMortalität21dNOEC=4000D3Annex B.9, S.42KrebstiereDaphnia magnaMortalität21dNOEC=4000D3Annex B.9, S.42KrebstiereDaphnia magnaReproduktion21d	Krebstiere	Daphnia magna	Reproduktion	21	d	NOEC	=	93.0		4	2012
KrebstiereDaphnia magnaReproduktion21dLOEC=3204CSBL, 2012, 2012KrebstiereDaphnia magnaReproduktion21dNOEC<	Krebstiere	Daphnia magna	Reproduktion	21	d	NOEC	=	410		4	GSBL, 2012, zitiert in ETOX, 2012
KrebstiereDaphnia magnaReproduktion21dLOEC=32042012KrebstiereDaphnia magnaReproduktion21dNOEC<											GSBL, 2012, zitiert in ETOX,
KrebstiereDaphnia magnaReproduktion21dNOEC<4101Munn, 1992a, 2tilert in ECKrebstiereDaphnia magnaReproduktion21dNOEC=64,0EndedD3Annex B,9 S, 42KrebstiereDaphnia magnaReproduktion21dNOEC=10.0D3Annex B,9 S, 42Monograph, 1999, Tab. B,8,2,1-1auf S, 439The C (2014), annex B,9 S, 42Dighe, 1991, 2tilert in ECMonograph, 1999, Tab. B,8,2,1-1KrebstiereDaphnia magnaReproduktion21dNOEC=10.0D3Annex B,9 S, 42KrebstiereDaphnia magnaMortalität21dNOEC=8000D3Annex B,9 S, 42KrebstiereDaphnia magnaMortalität21dNOEC=8000D3Annex B,9 S, 42KrebstiereDaphnia magnaMortalität21dNOEC=4600D1auf S, 497KrebstiereDaphnia magnaReproduktion21dLOEC=4101Monograph, 1999, Tab. B, 8, 21-4KrebstiereDaphnia magnaReproduktion21dLOEC=4101Monograph, 1999, Tab. B, 8, 21-6KrebstiereDaphnia magnaReproduktion21dLOEC=4101Monograph, 1999, Tab. B, 8, 43KrebstiereDaphnia magnaReproduktion21dLOEC=1240	Krebstiere	Daphnia magna	Reproduktion	21	d	LOEC	=	320		4	2012
KrebstiereDaphnia magnaReproduktion21dNOEC=64.0 End Botman not definedD3Annex B.9, S.42KrebstiereDaphnia magnaReproduktion21dNOEC=10.0D3Annex B.9, S.42KrebstiereDaphnia magnaReproduktion21dNOEC=10.0D3annex B.9, S.42KrebstiereDaphnia magnaMortalität21dNOEC=10.0D3auf S.493KrebstiereDaphnia magnaMortalität21dNOEC=8000D3Annex B.9, S.42KrebstiereDaphnia magnaMortalität21dNOEC=8000D3Annex B.9, S.42KrebstiereDaphnia magnaMortalität21dNOEC=8000D3Annex B.9, S.42KrebstiereDaphnia magnaMortalität21dNOEC=4600D1auf S.497KrebstiereDaphnia magnaReproduktion21dLOEC=4101Thun, 1992a, zitiert in ECKrebstiereDaphnia magnaReproduktion21dLOEC=4101Monograph, 1999KrebstiereDaphnia magnaReproduktion21dLOEC=120A2, R1(214), 2012KrebstiereDaphnia magnaReproduktion21dNOEC=120A2, R1 <td< td=""><td>Krebstiere</td><td>Daphnia magna</td><td>Reproduktion</td><td>21</td><td>d</td><td>NOEC</td><td><</td><td>410</td><td></td><td>1</td><td>Monograph, 1999</td></td<>	Krebstiere	Daphnia magna	Reproduktion	21	d	NOEC	<	410		1	Monograph, 1999
KrebstiereDaphnia magnaReproduktion21dNOEC=10.0D3auf S. 493KrebstiereDaphnia magnaMortalität21dNOEC=8000D3Morograph, 1999, Tab. B.8.2.1-1KrebstiereDaphnia magnaMortalität21dNOEC=8000D3Annex B.9, S. 42KrebstiereDaphnia magnaMortalität21dNOEC=4600D1Monograph, 1999KrebstiereDaphnia magnaMortalität21dLOEC=4600D1auf S. 497KrebstiereDaphnia magnaReproduktion21dLOEC=4101Monograph, 1999KrebstiereDaphnia magnaReproduktion21dLOEC=4101Monograph, 1999KrebstiereDaphnia magnaReproduktion21dLOEC=4101Monograph, 1999KrebstiereDaphnia magnaReproduktion21dNOEC=4101Monograph, 1999KrebstiereDaphnia magnaReproduktion21dNOEC=120A2, R1(2012, zitiert in ECX, 2012KrebstiereDaphnia magnaReproduktion21dNOEC=120A2, R1(2014), Annex B.9, S. 43InsektenChironomus riparusEmergenz-Rate28dNOEC=11000C1Scheerbaum 2	Krebstiere	Daphnia magna	Reproduktion	21	d	NOEC	=	64.0 ^{Error!} Bookmark not defined.	D	3	Wüthrich, 1990, zitiert in EC Monograph, 1999. Neubewertung EC (2014), Annex B.9, S. 42
KrebstiereDaphnia magnaReproduktion21dNOEC=10.0D3auf S. 493KrebstiereDaphnia magnaMortalität21dNOEC=8000D3Wüthrich, 1990, zitiert in EC Monograph, 1999, 13.0.8.2.1.4KrebstiereDaphnia magnaMortalität21dNOEC=8000D3Annex B.9, S. 42KrebstiereDaphnia magnaMortalität21dNOEC=4600D1Thun, 1992, zitiert in EC Monograph, 1999 Tab. B.8.2.1-6 auf S. 497KrebstiereDaphnia magnaReproduktion21dLOEC=4101Thun, 1992, zitiert in EC Monograph, 1999 Tab. B.8.2.1-6 auf S. 497KrebstiereDaphnia magnaReproduktion21dLOEC=4101Monograph, 1999KrebstiereDaphnia magnaReproduktion21dEC100=12404GSBL, 2012, zitiert in EC Monograph, 1999, zitiert in EC (2014), Annex B.9, S. 43KrebstiereDaphnia magnaReproduktion21dNOEC=120A2, R1McElligott 1999, zitiert in EC (2014), Annex B.9, S. 43InsektenChironomus riparusEmergenz-Rate28dNOEC=10000C1Scheerbaum 2003, zitiert in EC (2014)FischeOncor/hynchus sp.Verhalten21dNOEC=11404Efformation (2014)											Dighe, 1991, zitiert in EC
KrebstiereDaphnia magnaMortalität21dNOEC=8000D3Wüthrich, 1990, zitiert in EC Monograph, 1999. Neubewertung EC (2014), Annex B.9, S. 42KrebstiereDaphnia magnaMortalität21dNOEC=4600D1auf S. 497KrebstiereDaphnia magnaMortalität21dLOEC=4600D1auf S. 497KrebstiereDaphnia magnaReproduktion21dLOEC=4101Monograph, 1999KrebstiereDaphnia magnaImmobilisierung21dEC100=12404GSBL, 2012, zitiert in EC Monograph, 1999KrebstiereDaphnia magnaReproduktion21dNOEC=120A2, R1Mc Elligott 1999, zitiert in EC (2014), Annex B.9, S. 43KrebstiereDaphnia magnaReproduktion21dNOEC=120A2, R1Mc Elligott 1999, zitiert in EC (2014), Annex B.9, S. 43KrebstiereDaphnia magnaReproduktion21dNOEC=120A2, R1Mc Elligott 1999, zitiert in EC (2014), Annex B.9, S. 43InsektenChironomus riparusEmergenz-Rate28dNOEC=11404FTOX, 2012	Krebstiere	Daphnia magna	Reproduktion	21	d	NOEC	=	10.0	D	3	Monograph, 1999, Tab. B.8.2.1-1 auf S. 493
KrebstiereDaphnia magnaMortalităt21dNOEC=4600D1Infun, 1992a, zitert in EC Monograph, 1999 Tab. B.8.2.1-6 auf S. 497KrebstiereDaphnia magnaReproduktion21dLOEC=4101Thun, 1992a, zitiert in EC Monograph, 1999KrebstiereDaphnia magnaImmobilisierung21dEC100=12404GSBL, 2012, zitiert in ETOX, 	Krebstiere	Daphnia magna	Mortalität	21	d	NOEC	=	8000	D	3	Wüthrich, 1990, zitiert in EC Monograph, 1999. Neubewertung EC (2014), Annex B.9, S. 42
KrebstiereDaphnia magnaMortalität21dNOEC=4600D1auf S. 497KrebstiereDaphnia magnaReproduktion21dLOEC=4101Thun, 1992a, zitiert in ECKrebstiereDaphnia magnaImmobilisierung21dEC100=12404GSBL, 2012, zitiert in ETOX, 2012KrebstiereDaphnia magnaReproduktion21dNOEC=120A2, R1Mc Elligott 1999, zitiert in EC (2014), Annex B.9, S. 43InsektenChironomus riparusEmergenz-Rate28dNOEC=1000C1Scheerbaum 2003, zitiert in EC (2014)FischeOncorhynchus so,Verhalten21dNOEC=11404FTOX, 2012											Thun, 1992a, zitiert in EC Monograph, 1999 Tab, B.8.2.1-6
Krebstiere Daphnia magna Reproduktion 21 d LOEC = 410 Thun, 1992a, zitiert in EC Krebstiere Daphnia magna Immobilisierung 21 d EC100 = 1240 4 GSBL, 2012, zitiert in ETOX, 2012 Krebstiere Daphnia magna Reproduktion 21 d NOEC = 120 A2, R 1 Mc Elligott 1999, zitiert in EC (2014), Annex B.9, S. 43 Insekten Chironomus riparus Emergenz-Rate 28 d NOEC = 1000 C 1 Scheerbaur 2003, zitiert in EC (2014), Annex B.9, S. 43 Fische Oncorhynchus so, Verhalten 21 d NOEC = 1100 C 1 Scheerbaur 2003, zitiert in EC (2014), Annex B.9, S. 43	Krebstiere	Daphnia magna	Mortalität	21	d	NOEC	=	<u>4600</u>	D	1	auf S. 497
Krebstiere Daphnia magna Immobilisierung 21 d EC100 = 1240 4 GSBL, 2012, zitiert in ETOX, 2012 Krebstiere Daphnia magna Reproduktion 21 d NOEC = 120 A2, R 1 McElligott 1999, zitiert in EC (2014), Annex B.9, S. 43 Insekten Chironomus riparus Emergenz-Rate 28 d NOEC = 1000 C 1 Scheerbaum 2003, zitiert in EC (2014) Fische Oncorhynchus so, Verhalten 21 d NOEC = 1140 4 FTOX 2012	Krebstiere	Daphnia magna	Reproduktion	21	d	LOEC	=	410		1	Thun, 1992a, zitiert in EC Monograph, 1999
Krebstiere Daphnia magna Reproduktion 21 d NOEC = 120 A2, R 1 Mc Elligott 1999, zitiert in EC (2014), Annex B.9, S. 43 Insekten Chironomus riparus Emergenz-Rate 28 d NOEC = 1000 C 1 Scheerbaum 2003, zitiert in EC (2014) Fische Oncorhynchus so, Verhalten 21 d NOEC = 1140 4 FTOX. 2012	Krebstiere	Daphnia magna	Immobilisieruna	21	d	EC100	=	1240		4	GSBL, 2012, zitiert in ETOX, 2012
Insekten Chironomus riparus Emergenz-Rate 28 d NOEC = 1000 C 1 Scheerbaur 2013, zitiert in EC (2014) Fische Oncorhynchus so. Verhalten 21 d NOEC = 1140 4 FTOX. 2012	Krebstiere	Daphnia magna	Reproduktion	21	d	NOEC	=	120	A2, R	1	Mc Elligott 1999, zitiert in EC (2014), Annex B.9, S, 43
Fische Oncorhynchus sp. Verhalten 21 d NOEC = 1140 4 FTOX 2012	Insekten	Chironomus riparus	Emergenz-Rate	28	d	NOEC	=	<u>1000</u>	с	1	Scheerbaum 2003, zitiert in EC
	Fische	Oncorhynchus sp.	Verhalten	21	d	NOEC	=	1140		4	ETOX. 2012

^k Der EC10 wurde von den Autoren nachträglich berechnet und wird als verlässlicher eingestuft.

		EFFE	KTDATEN	RECHERE	CHE					
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimen- sion	Para- meter	Opera- tor	Wert [µg/L]	Notiz	Validität	Literaturquelle
Fische	Oncorhynchus sp.	Wachstum	21	d	LOEC	=	4300		4	GSBL, 2012, zitiert in ETOX, 2012
Fische	Oncorhynchus sp.	Wachstum	21	d	LOEC	=	3200		4	GSBL, 2012, zitiert in ETOX, 2012
Fische	Oncorhynchus mykiss	Mortalität	21	d	NOEC	=	10000	D, N	1	Douglas <i>et al.</i> , 1989, zitiert in EC Monograph, 1999, B.8.2.1-1 auf S. 493
Fische	Oncorhynchus mykiss	Mortalität	21	d	NOEC	=	8900	D, N	1	Thun, 1992d, zitiert in EC Monograph, 1999,B.8.2.1-1 auf S. 493
		Geometrisches Mittel			NOEC	=	9434			
Fische Oncorbynchus mykiss		Wachstum	21	d	NOEC	=	1000	D, N	1	Douglas et al, 1989, zitiert in EC Monograph, 1999, B.8.2.1-1 auf S. 493
Fische	Oncorhynchus mykiss	Wachstum	21	d	NOEC	=	1100	D, N	1	Thun, 1992d, zitiert in EC Monograph, 1999, B.8.2.1-1 auf S. 493
		Geometrisches Mittel			NOEC	=	<u>1049</u>			
Fische	Oncorhynchus mykiss	Verhalten	21	d	NOEC	=	3200		1	Thun, 1992d, zitiert in EC Monograph, 1999, B.8.2.1-1 auf S. 493
Fische	Fische Oncorhynchus mykiss Verhalten		21	d	NOEC	=	1140		4	GSBL, 2012, zitiert in ETOX, 2012
		subchronisch	e und chr	onische D	aten mari	n ^g				•
Algen	Phaeodactvlum tricornutum	Wachstumsrate	96	h	NOEC	=	5.7	1	4	EC. 2005
Algen	Phaeodactvlum tricornutum	Wachstumsrate	96	h	EC10	=	8.1		4	EC. 2005
Algen	Isochrysis galbana	Wachstum	21	d	EC20	=	7		4	His & Seaman, 1993
Algen	Chaetoceros calcitrans	Wachstum	21	d	EC20	=	64		4	His & Seaman, 1993
Mollusken	Crassostrea gigas	Wachstum	9	d	EC10	=	250		4	EC, 2005
		Mikro	- und M	esokosn	nen					
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Nassgewicht	16	d	EC50	=	150		2	Mohr et al. 2013
Wasserpflanzen	Myriopyllum spicatum	Wachstum-Trockengewicht	16	d	EC50	=	60		2	Mohr et al. 2013
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Wurzel- Trockengewicht	16	d	EC50	=	80		2	Mohr e <i>t al.</i> 2013
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Gesamtsprosslänge	30	d	EC50	=	90		2	Mohr <i>et al.</i> 2013
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Hauptsprosslänge	30	d	EC50	=	110		2	Mohr <i>et al.</i> 2013
Wasserpflanzen	Myriopyllum spicatum	Wachstum-Nassgewicht	30	d	EC50	=	60		2	Mohr <i>et al.</i> 2013
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Trockengewicht	30	d	EC50	=	50		2	Mohr <i>et al.</i> 2013
Wasserpflanzen	Myriopyllum spicatum	Wachstum–Wurzel- Trockengewicht	30	d	EC50	=	70		2	Mohr <i>et al.</i> 2013
Teichmesokosmos	Gemeinschaft Phytoplankton	Abundanz	24	Monat e	NOEC	=	16	Р	3	Grünwald, 2003
Teichmesokosmos	Macrophytes	Abundanz	24	Monat e	NOEC	=	64	Р	3	Grünwald, 2003
Teichmesokosmos	Feichmesokosmos Chlorophyceae Abundanz		24	Monat e	NOEC	=	64	Р	3	Grünwald, 2003
Teichmesokosmos	Teichmesokosmos Chroomonas acuta Abundanz (Cryptophyceae)		24	Monat e	NOEC	=	16	Р	3	Grünwald, 2003
Teichmesokosmos	ichmesokosmos Chrysophyceae Abundanz		24	Monat	NOEC	=	16	Р	3	Grünwald, 2003

		EFFEk	TDATEN	RECHERE	CHE					
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimen- sion	Para- meter	Opera- tor	Wert [µg/L]	Notiz	Validität	Literaturquelle
				е						
Teichmesokosmos	Cryptomonas erosa et ovata (cyrptophyceae)	Abundanz	24	Monat e	NOEC	=	16	Р	3	Grünwald, 2003
Teichmesokosmos	Monosiga varians (Chrysophyceae)	Abundanz	24	Monat e	NOEC	=	128	Р	3	Grünwald, 2003
Teichmesokosmos	mesokosmos Nephroselmis olivacea Abundanz (Chlorophyceae)		24	Monat e	NOEC	١٧	4	Р	3	Grünwald, 2003
Teichmesokosmos	Gemeinschaft Zooplankton	Abundanz	24	Monat e	NOEC	=	64	Р	3	Grünwald, 2003
Teichmesokosmos	Chydorus sphaericus (Cladocera)	Abundanz	24	Monat e	NOEC	=	4	Р	3	Grünwald, 2003
Teichmesokosmos	Cladocera	Abundanz	24	Monat e	NOEC	=	16	Р	3	Grünwald, 2003
Teichmesokosmos	Cyclopoida (Copepoda)	Abundanz	24	Monat e	NOEC	١٧	128	Р	3	Grünwald, 2003
Teichmesokosmos	Nauplia ssp. (Copepoda)	Abundanz	24	Monat e	NOEC	<	4	Р	3	Grünwald, 2003
Teichmesokosmos	Rotifera	Abundanz	24	Monat e	NOEC	=	16	Р	3	Grünwald, 2003
Teichmesokosmos	Simocephalus vetulus (Cladocera)	Abundanz	24	Monat e	NOEC	=	4	Р	3	Grünwald, 2003
Algen	Kieselalgengemeinschaft	Wachstumsrate (Biomasse)	144	h	NOEC	=	5.0		3	Debenest et al., 2009
Algengemeinschaft	Periphyton	Chlorophyllfluoreszenz	15	min	EC50	=	14.44		3	Dorigo et al. 2004
		Tests mit Formul	ierunaer	, i (in ua V	Virksubst	anz/L)	-	-		
		akute	Effektda	ten limnis	ch	,				
Algen	Chlorella pyrenoidosa	Wachstum	96	h	EC50	=	20-25	Isopro- turon 50%	4	Anton et al. 1993
Algen	Navicula pelliculosa	Biomasse	72	h	EC50	=	26	Protugan 80 WG C	1	Scheerbaum 2004, zitiert in EC (2014), Annex B.9, S. 61
Algen	Navicula pelliculosa	Wachstumsrate	72	h	EC50	=	38	Protugan 80 WG C	1	Scheerbaum 2004, zitiert in EC (2014), Annex B.9, S. 61
Algen	Navicula pelliculosa	Biomasse	72	h	EC50	=	23.4 (46.9)	Protugan 50 SC B, Z	3	Scheerbaum 2004, zitiert in EC (2014), Annex B.9, S. 76
Algen	Navicula pelliculosa	Wachstumsrate	72	h	EC50	=	47.8 (95.8)	Protugan 50 SC B, Z	3	Scheerbaum 2004, zitiert in EC (2014) , Annex B.9, S. 76
Algen	Navicula pelliculosa	Biomasse	72	h	EC50	=	26	Protugan 50 SC C, Q	1	Scheerbaum 2011a, zitiert in EC (2014), Annex B.9, S. 71
Algen	Navicula pelliculosa	Wachstumsrate	72	h	EC50	=	61.9	Protugan 50 SC C, Q	1	Scheerbaum 2011, zitiert in EC (2014), Annex B.9, S. 71
Algen	Desmodesmus subspicatus	Biomasse	72	h	EC50	=	118 (145)	Protugan 80 WG C, Z	3	Dengler 2002b, zitiert in EC (2014), Annex B.9, S. 65
Algen	Desmodesmus subspicatus	Wachstumsrate	72	h	EC50	=	552 (681)	Protugan 80 WG	3	Dengler 2002b, zitiert in EC (2014), Annex B.9, S. 65

		EFFEK	KTDATENF	RECHERE	CHE					
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimen- sion	Para- meter	Opera- tor	Wert [µg/L]	Notiz	Validität	Literaturquelle
								C, Z		
Wasserpflanzen	Lemna minor	Biomasse	7	d	EC50	=	113	Protugan 50 SC C, S	1	Scheerbaum 2011b zitiert in EC (2014), Annex B.9, S. 86
Wasserpflanzen	Lemna minor	Biomasse (Trockengewicht)	7	d	EC50	=	53.3	Protugan 50 SC C, S	1	Scheerbaum 2011b zitiert in EC (2014), Annex B.9, S. 86
Wasserpflanzen	Wasserpflanzen Lemna minor Wachstur		7	d	EC50	=	179	Protugan 50 SC C, S	1	Scheerbaum 2011b zitiert in EC (2014), Annex B.9, S. 86
Wasserpflanzen	oflanzen Lemna minor Wachstumsrate (Trockengewicht)		7	d	EC50	=	80.0	Protugan 50 SC C, S	1	Scheerbaum 2011b zitiert in EC (2014), Annex B.9, S. 86
Ringelwürmer	Tubifex tubifex Mortalität		4-7	d	LC50	<	10000	Matin® 500 g/L A, R	3	Paris-Palacios 2010
Krebstiere	bstiere Daphnia magna Immobilisierung		48	h	EC50	>	51800	Protugan 80 WG A2, S	1	Heintze 2002, zitiert in EC (2014), Annex B.9, S. 36
Krebstiere Daphnia magna		Immobilisierung	48	h	NOEC	=	51800	Protugan 80 WG A2, S	1	Heintze 2002, zitiert in EC (2014), Annex B.9, S. 36
		chronis	che Effek	tdaten lim	nisch					
Algen	Chlorella pyrenoidosa	Wachstum	96	h	NOEC	<	2	Isopro- turon 50%	4	Anton et al. 1993
Algen	Navicula pelliculosa	Wachstumsrate	72	h	NOEC	=	6.25	Protugan 50 SC C, Q	1	Scheerbaum 2011a, zitiert in EC (2014) , Annex B.9, S. 71
Wasserpflanzen	Lemna minor	Biomasse	7	d	NOEC	=	14.7	Protugan 50 SC C, S	1	Scheerbaum 2011b, zitiert in EC (2014), Annex B.9, S. 86
Wasserpflanzen	Lemna minor	Biomasse (Trockengewicht)	7	d	NOEC	=	14.7	Protugan 50 SC C, S	1	Scheerbaum 2011b zitiert in EC (2014), Annex B.9, S. 86
Wasserpflanzen	Lemna minor	Wachstumsrate	7	d	NOEC	=	45.9	Protugan 50 SC C, S	1	Scheerbaum 2011b, zitiert in EC (2014), Annex B.9, S. 86
Wasserpflanzen	Lemna minor	Wachstumsrate (Trockengewicht)	7	d	NOEC	=	14.7	Protugan 50 SC C, S	1	Scheerbaum 2011b, zitiert in EC (2014), Annex B.9, S. 86
		Mik	ro- und M	esokosme	n					
Teichmesokosmos	Gemeinschaft Phytoplankton und D. longespina	Abundanz und Primärproduktion	4 & 7	d	NOEC	<	80	Protugan 50 SC C2	2	Taylor 2012, zitiert in EC (2014), Annex B.9, S. 93
Teichmesokosmos	Gemeinschaft Phytoplankton und D. longespina	Abundanz und Primärproduktion	14 &- 21	d	NOEC	<	80	Protugan 50 SC C2	2	Taylor 2012, zitiert in EC (2014), Annex B.9, S. 93
Teichmesokosmos Gemeinschaft Phytoplankton Abu		Abundanz	84	d	NOEC	=	1.5	ARELON 500 A3, S	1	Müller 2006, zitiert in EC (2014), Annex B.9, S. 103
Teichmesokosmos Gemeinschaft Makrophyten		Abundanz	84	d	NOEC	=	13.8	ARELON	1	Müller 2006, zitiert in EC (2014),

	EFFEKTDATENRECHERECHE									
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimen- sion	Para- meter	Opera- tor	Wert	Notiz	Validität	Literaturquelle
				0.011	motor		(+3, -1	500 A3, S		Annex B.9, S. 103
Teichmesokosmos	Lemna minor	Abundanz	56	d	NOEC	=	13.8	ARELON 500 A3, S	1	Kroos and Christl 2006, zitiert in EC (2014)

Notizen

- A Effektkonzentration durch chemische Analytik bestätigt. Aus den Angaben war allerdings nicht ersichtlich, ob die gemessene Konzentration angegeben wurde, oder die nominale Konzentration wenn die Analytik eine Abweichung von weniger als 20% von der nominalen Konzentration ergeben hat (siehe Notiz C).
- A2 Basierend auf der mittleren gemessenen Konzentration
- A3 Basierend auf der initial gemessenen Konzentration. Im Verlauf des Mesokosmenexperiments nahm die Konzentration Isoproturons sukzessive ab.
- B Basierend auf der nominalen Konzentration. Es fand keine Nachmessung statt.
- C Basierend auf der nominalen Konzentration, Nachmessung der Konzentration hat stattgefunden und gemessene Wiederfindung lag bei <± 20 % der nominalen Konzentration bei Testende.
- C2 Basierend auf der nominalen Konzentration. Es wurde einmalig bei Testbeginn appliziert und die Konzentration wurde bei Testbeginn analytisch überprüft. Nach 7 und nach 21 Tagen wurden 80 und 75% des Testwassers entnommen und durch Wasser ohne Isoproturon ersetzt (Verdünnung). Dadurch verringerte sich die Konzentrationen (nominal, wurde nicht mehr analytisch überprüft) von Isoproturon im Verlauf des Mesokosmenexperiments.
- D Im Monograph der EC (1999) und dem EC (2014) wird zwar angegeben, dass nur Studien verwendet wurden, bei denen eine Nachmessung der Konzentrationen stattgefunden hat, jedoch ist es nicht klar, ob sich der angegebene Wert auf die gemessenen oder nominale Konzentration bezieht.
- E Basierend auf der nominalen Konzentration, Nachmessung der Konzentration hat in Larras et al. 2013 exemplarisch stattgefunden und kann auch auf diese Studie übertragen werden. Nach 96 h Exposition von Sellaphora minima und Achnanthidium minutissimum im benthischen Modus lag die Abweichung der gemessenen von der nominalen Konzentration bei <20%. In Abwesenheit von Algen betrug die Dissipation 14%, wovon der Grossteil (10% total) durch Adsorption an der Gefässwand zustande kam.
- K Synchronisierte Algenkultur. 24 h reichen aus, um den Endpunkt "Reproduktionshemmung" zu messen, da alle Zellen der Kontrolle in diesem Zeitraum einen kompletten Zellzyklus durchlaufen. Der Test integriert Effekte auf das Zellwachstum und auf die Zellteilung (Neuwoehner *et al.*, 2008)
- L Arithmetischer Mittelwert aus den Ergebnissen mehrerer (Ringtest)-Studien. In Klammern ist die Anzahl der im Mittelwert zusammengefassten Werte (n) angegeben. Ergebnisse aus dem Ringtest sind unter anderem in Mohr et al. 2013 publiziert, welche aber neben einem Test mit Sediment, auch einen sediment-freien Test und einen Microcosmentest durchgeführt und publiziert haben. Ergebnisse aus dem Test mit Sediment sind nicht einzeln aufgeführt, da sie schon in den angegebenen Effektwerten (Mittelwerte) enthalten sind.
- M Nachträglich berechneter Wert
- N Die Testdauer von 21 Tagen ist für einen chronischen Fischtest eigentlich zu kurz. Wie unter 7.2 erläutert, wird erden diese Werte hier aber trotzdem akzeptiert.
- P Nur einmalige Applikation
- Q Unklar, ob sich Wert auf Menge der Wirksubstanz oder der Formulierung bezieht. Wert in Klammer entspräche dem auf die Menge Wirksubstanz umgerechneten Wert
- R Semi-statischer Ansatz
- S Statischer Ansatz
- T Durchflusssystem
- U
- V Lösungsmittelkonzentration überschreitet die nach TGD for EQS (EC, 2011) vorgesehene Höchstmenge weniger als fünffach. Da kein Einfluss auf Kontrollen festgestellt wurde, wird das Testergebnis noch als Verlässlich mit Einschränkung bewertet (R2).
- W Lösungsmittelkonzentration überschreitet die nach TGD for EQS (EC, 2011) vorgesehene Höchstmenge deutlich (>0.05%). Testergebnis daher nicht verlässlich (R3).
- X Niedrigstes Testergebnis für *R. subspicatus*. Standard-Testdauer ist allerdings 72 h (hier 96 h). Da für 96 h ein valides Testergebnis vorliegt, und die Studie von Ma ebenfalls Lösungsmittelkonzentrationen über dem nach OECD TG 201 (OECD 2011) vorgesehenen Grenzwert von 0.01% eingesetzt wurde, wird eine andere Studie (nach 72 h) zur EQSH-Herleitung bevorzugt).
- Y Die Studie von Greulich et al. (2002) deutet darauf hin, dass Amphibien (Bombina variegata) in ihrem empfindlichsten Entwicklungsstadium sehr sensitiv auf Isoproturon reagieren könnten. Der Toxizitätstest dauerte jedoch nur 24 h, der Abstand vom LOEC zum NOEC ist zu gross gewählt, keine klare Dosis-Wirkungsbeziehung konnte demonstriert werden und die Konzentrationen wurden nicht analytisch validiert. Eine Studie mit dem Isoproturon strukturähnlichen Herbizid Diuron, welches auch zu den Phenylharnstoffen gehört, zeigt, dass dieses eher schwach auf Amphibien wirkt. Es wurde ein NOAEC (*no observed adverse effect level*) von 7600 µg/L ermittelt (Schuytema & Nebeker, 1998). Aufgrund all dieser Aspekte wird die Studie von Greulich *et al.* (2002) nicht berücksichtigt, und hat keinen Einfluss auf die Wahl des AF.
- Z Aus der Beschreibung der Testergebnisse war nicht ersichtlich, ob sich die Effektkonzentrationen auf die Wirksubstanz bezieht, oder die Formulierung. In diesen Fällen wurde vermutet, dass sich die Angabe auf die Formulierung bezieht, welche dann auf die Konzentration der Wirksubstanz umgerechnet wurde. Der in der Beschreibung angegebene Wert dann noch zusätzlich in Klammern angegebene.

5. Graphische Darstellung der Effektdaten

Abbildung 1: Kurzzeit- und Langzzeit-Effektdaten von Isoproturon für aquatische Organismen. Erstellt in GraphPad Prism Software Version 5.02 (Prism, 2009).

Abbildung 1 gibt eine Übersicht aller validen Kurzzeit- und Langzeit-Effektdaten zu Isoproturon. Erwartungsgemäss stellen die Primärproduzenten die sensitivste Gruppe dar. Die Standardabweichung der logarithmierten L(E)C50-Werte beträgt 1.3.

Ein Vergleich limnischer und mariner Daten entfällt, da keine belastbaren Daten für marine Organismen vorliegen (siehe dazu Fussnote zu Tabelle 2). Die Europäische Kommission (EC 2003) kommt in ihrem Bericht jedoch zu dem Schluss, dass marine Invertebraten und Algen nicht sensitiver sind als limnische Taxa zu sein scheinen.

6. Herleitung der EQS

Um chronische und akute Qualitätsziele herzuleiten, kann die Sicherheitsfaktormethode (AF-Methode) auf der Datenbasis von akuten und chronischen Toxizitätsdaten verwendet werden. Dabei wird mit dem tiefsten chronischen Datenpunkt ein AA-EQS (Annual-Average-Environmental-Quality-Standard) und mit dem tiefsten akuten Datenpunkt ein MAC-EQS (Maximum-Acceptable-Concentration-Environmental-Quality-Standard) abgeleitet. Wenn der Datensatz umfassend genug ist, können diese EQS zusätzlich mittels einer Speziessensitivitätsverteilung (SSD) bestimmt werden. Valide Mikro-/Mesokosmosstudien dienen einerseits zur Verfeinerung des AF, der durch eine SSD hergeleitet wurde. Andererseits können sie auch direkt zur Bestimmung eines EQS verwendet werden. Die Evaluation der Mikro- und Mesokosmosstudien basiert auf den Qualitätsleitlinien beschrieben im TGD for EQS (EC 2011).

7. Chronische Toxizität:

7.1. AA-EQS Herleitung mit AF-Methode

Es liegen NOEC und EC10-Werte für die Organismengruppen der Primärproduzenten, Krebstiere und Fische vor (Tabelle 4). Bei den in Tabelle 4 aufgeführten Studien liess sich nicht überprüfen, ob die nach dem TGD for EQS vorgesehenen Lösungsmittelkonzentration von 0.01% überschritten wurde, da dazu keine Angaben in den Zulassungsberichten gemacht wurden.

 Tabelle 4: Übersicht zu den kritischen Toxizitätswerten für Wasserorganismen aus längerfristigen Untersuchungen für Isoproturon.

Gruppe	Spezies	Wert	Konz. in µg/L	Literatur
<u>Basisdatensatz</u>				
Primärproduzenten	Navicula pelliculosa	NOEC	6.4	Hoberg, 1998b, zitiert in EC (2014), Annex B.9, S. 71
Krebstiere	Daphnia magna	NOEC	120	Mc Elligott 1999, zitiert in EC (2014), Annex B.9, S. 43
Fische	Oncorhynchus mykiss	NOEC	1049	Geometrischer Mittelwert aus: Douglas <i>et al</i> , 1989, und Thun, 1992d, zitiert in EC Monograph, 1999, B.8.2.1-1 auf S. 493

Der NOEC für Oncorhynchus mykiss (Fisch) wurde bei einer Testdauer von nur 21 Tagen ermittelt, und ist daher für die Ableitung eines chronischen Qualitätskriteriums eigentlich unzulässig. Es kann aber davon ausgegangen werden, dass Isoproturon auch nach 28 Tagen Exposition bei Oncorhynchus mykiss keine höhere Toxizität im Vergleich zu den Algen und Wasserpflanzen zeigen würde. Demnach ist der bei der Diatomee Navicula pelliculosa bestimmte NOEC von 6.4 µg/L mit hoher Sicherheit tatsächlich der tiefste belastbare Effektwert. Dieses Schlussfolgerung deckt sich auch mit dem bekannten Wirkungsmechanismus Isoproturons, welches spezifisch die Photosynthese hemmt. Der zuvor tiefste NOEC für Desmodesmus subspicatus (Fischer, 1986, zitiert in EC Monograph, 1999) wurde im Renewal Assessment Report nachbewertet und invalidiert (EC (2014), Annex B.9, S. 44). Da die empfindlichsten Organismengruppen im Datensatz vertreten sind kann nach dem TGD for EQS (EC 2011) ein Assessmentfaktor von 10 angewendet werden. Nach der AF-Methode ergibt sich daraus folgendes Langzeit-Qualitätskriterium:

7.2. AA-EQS mit SSD-Methode

Aufgrund der Anforderungen nach dem TGD for EQS wurde für die Ableitung eines AA-EQS mittels der SSD^I-Methode, für Substanzen mit bekanntem Wirkmechanismus (dies trifft auf Isoproturon zu), eine SSD für den kompletten Datensatz angefertigt (Abbildung 2), und eine weitere SSD mit den Arten die zu den voraussichtlich sensitivsten taxonomischen Gruppen gehören (Abbildung 3). Details zur statistischen Auswertung der SSDs befinden sich im Annex (Tabelle A1-6, Abbildung A1-2). Für SSDs basierend auf einem kompletten Datensatz werden chronische Daten von 10-15 verschiedenen Arten aus acht taxonomischen Gruppen benötigt. In der Effektdatensammlung sind zwar 10 Arten enthalten, allerdings nur von 7 taxonomische Gruppen. Zur Visualisierung der Effektdaten wurde aber trotzdem eine SSD erstellt (Abbildung 2).

Abbildung 2: Speziessensitivitätsverteilung der chronischen EC10 oder NOEC Werte für alle Arten aus relevanten und validen Studien (unterstrichene Werte in Tabelle 3): Diatomeen = braun; Grünalgen = grün; höhere Wasserpflanze = hellgrün; Krebstiere = blau; Insekten = rot. Anzahl Datenpunkte (n) = 10; alle Tests auf Normalverteilung gemäss ETX 2.1 erfüllt; HC05 = 759.3 ng/L, untere Grenze des 95%-Konfidenzbereichs (LL HC05) = 21.4 ng/L, Verhältnis HC05/LL HC05 = 35.5 (Mass für die Unsicherheit des HC05).

¹ Species Sensitivity Distribution

Auch wenn die Daten normalverteilt sind, erkennt man einen klaren Bruch in der SSD oberhalb des HC50 (Abbildung 2). Das hohe Verhältnis von HC05 zu LL HC05 von 35.5 zeigt ebenfalls eine geringe Zuverlässigkeit des HC5 an. Es ist klar ersichtlich, dass Algen und Wasserpflanzen am empfindlichsten sich (alle unterhalb der HC50). Dies erklärt sich durch den bekannten Wirkmechanismus Isoproturons. Für eine SSD basierend auf Daten der Algen und Wasserpflanzen stehen nur fünf der nach dem TGD for EQS geforderten 10 Datenpunkte zur Verfügung. Zur Visualisierung und um einen Vergleich mit der AF-Methode zu ermöglichen, wurde aber trotzdem eine SSD angefertigt (Abbildung 3).

Abbildung 3: Speziessensitivitätsverteilung der chronischen EC10 oder NOEC Werte für Algen und Wasserpflanzen aus relevanten und validen Studien (unterstrichene Werte in Tabelle 3): Diatomeen = braun; Grünalgen = grün; Höhere Pflanzen (hier Wasserpflanzen) = hellgrün. Anzahl Datenpunkte (n) = 5; alle Tests auf Normalverteilung gemäss ETX 2.1 erfüllt; HC05 = 4.87 μ g/L, untere Grenze des 95%-Konfidenzbereichs (LL HC05) = 1.799 μ g/L, Verhältnis HC05/LL HC05 = 2.7 (Mass für die Unsicherheit des HC05).

Der von der SSD in Abbildung 3 abgeleitete HC5 beträgt 4.87 µg/L. Läge man einen AF von 5 zugrunde, würde sich daraus ein AA-EQS von 0.97 µg/L ergeben, welcher im Bereich des durch die AF-Methode bestimmten AA-EQS befindet.

7.3. AA-EQS aus Mikro-/Mesokosmosstudien

Es sind keine validen NOECs aus Mikro- oder Mesokosmosstudien vorhanden

7.4. AA-EQS Schlussfolgerung

Der mit der AF-Methode bestimmte AA-EQS liegt bei 0.64 µg/L. Aufgrund der unzureichenden Datenlage konnte kein AA-EQS mittels SSD-Methode, oder basierend auf Mikro-/Mesokosmenstudien abgeleitet werden.

8. Akute Toxizität

8.1. MAC-EQS Herleitung mit AF-Methode

Es liegen EC50-Werte für die Organismengruppen der Primärproduzenten, Krebstiere und Fische vor, sowie für Bakterien. Isoproturon wird gemäss der Definition der Vereinten Nationen (UN 2015) als sehr giftig eingestuft (Tabelle 6). Bei den in Tabelle 5 aufgeführten Studien liess sich nicht überprüfen, ob die nach dem TGD for EQS vorgesehenen Lösungsmittelkonzentration von 0.01% überschritten wurde, da dazu keine Angaben in den Zulassungsberichten gemacht wurden. Lediglich für die Studie von Rioboo *et al.* 2002 konnte recherchiert werden, dass Lösungsmittelkonzentration bei <0.05% lag, und damit über der nach dem TGD for EQS vorgesehenen Höchstmenge. Allerdings ist die Überschreitung nicht sehr gross, und in anderen Test-Guidelines, z.B. der US-EPA^m, ist eine solche Lösungsmittelkonzentration noch zulässig. Daher wurde die Studie noch als valide eingeschätzt.

Gruppe	Spezies	Wert	Konz. in µg/L	Literatur
<u>Basisdatensatz</u>				
Primärproduzenten	Chlorella vulgaris	EC50	19	Rioboo et al. 2002
Krebstiere	Daphnia magna	EC50	580	Vial, 1989, zitiert in EC Monograph, 1999. Neubewertung in EC (2014), Annex B.9, S. 41
Fische	Oncorhynchus mykiss	EC50	37220	Ritter, 1989, zitiert in EC Monograph, 1999, Tab. B.8.2.1-1 auf S. 493
Weitere				
Sonstige	Pseudomonas putida	EC50	58600	Bruns & Knacker, 1998

Tabelle 5: Übersicht der kritischen akuten Toxizitätswerte für Wasserorganismen für Isoproturon.

 $^{^{\}rm m}$ US EPA 1996, OPPTS 850.1075 Fish Acute Toxicity Test, Freshwater and Marine

 Tabelle 6: Risikoklassierung der akuten aquatischen Toxizität anhand der niedrigsten gemessenen EC50-Werte (UN 2015).

Risikoklasse	niedrigster EC50-Wert	erreichter Wert
nicht eingestuft	>100 mg/L	
schädlich	>10 mg/L; <100mg/L	
giftig	<10 mg/L;>1mg/L	
sehr giftig	< 1mg/L	х

Um Kurzzeit-Qualitätskriterien (MAC-EQS) herzuleiten, kann die AF-Methode auf der Datenbasis der akuten Toxizitätsdaten verwendet werden. Wenn 3 valide EC50-Kurzzeittestergebnisse von Vertretern der trophischen Ebenen Fische, Krebstiere und Primärproduzenten vorhanden sind, kann ein Assessmentfaktor von 100 mit dem EC50-Wert der sensitivsten Art verrechnet werden. Der Assessmentfaktor kann gemäss TGD for EQS (EC, 2011) auf 10 erniedrigt werden, wenn entweder die Standardabweichung der logarithmierten EC50-Werte < 0.5 ist (hier nicht der Fall), oder der Wirkmechanismus bekannt ist und ein Vertreter der empfindlichsten taxonomischen Gruppe im Effektdatensatz enthalten ist. Ein Vertreter der empfindlichsten taxonomischen Gruppe für dieses Herbizid ist *Chlorella vulgaris*, welcher im Datensatz den tiefsten Wert (bezogen auf Wachstumsrate) hat. Es gibt im Effektdatensatz noch einige tiefere valide EC50, diese aber auf Biomasse Wachstum bezogen, und nicht auf die Wachstumsrate, welche zu bevorzugen ist. Mit einem Assessmentfaktor von 10 ergibt sich:

MAC-EQS = $19.0 \,\mu g/L / 10 = 1.9 \,\mu g/L$

8.2. MAC-EQS mit SSD Methode

Die Anforderungen für die Ableitung eines MAC-EQS mittels einer SSD, basierend auf dem kompletten Datensatz, sind nicht erfüllt. Es liegen zwar Effektdatenpunkte von mehr als 15 Arten vor (n=18), allerdings sind nur 5 der 8 geforderten taxonomische Gruppen vertreten. Um jedoch die Verteilung der Sensitivität über die verschieden Arten und taxonomischen Gruppen beurteilen zu können, wurde trotzdem eine SSD erstellt (Abbildung 4).

Abbildung 4: SSD der akuten EC50-Werte aller taxonomischen Gruppen; Diatomeen = braun; Grünalgen = grün (Punkt); Höhere (Wasser-)Pflanzen (i) Monokotyledon (Wasserlinse) = hellgrün (nach oben weisendes Dreieck) und (ii) Dikotyledon (Tausendblattgewächse) = hellgrün (nach unten weisendes Dreieck), Krebstiere = blau; Bakterien = grau, Fische = orange. SSD berechnet mit ETX Version 2.1 (van Vlaardingen *et al.* 2004). Es liegt keine Normalverteilung vor.

Neben den formalen Anforderungen, erfüllt die SSD auch nicht die statistischen Anforderung nach Normalverteilung (Tabelle A7 im Appendix). Ein Bruch in der Verteilung ist klar erkennbar. Die Primärproduzenten (Algen und Wasserpflanzen), zeigen sich aufgrund der Photosynthese hemmenden Wirkung (PSII-Inhibitor) von Isoproturon als die empfindlichste taxonomische Einheit. Da also der Wirkmechanismus bekannt ist, kann nach dem TGD for EQS eine SSD nur für die sensitivste taxonomische Gruppe angefertigt werden (Abbildung 5).

Abbildung 5: SSD der akuten EC50-Werte für Algen und Wasserpflanzen berechnet mit dem Programm ETX 2.0 (van Vlaardingen *et al.* 2004). Anzahl Datenpunkte (n) = 13; alle Tests auf Normalverteilung gemäss ETX 2.1 erfüllt; HC05 = 13.85 µg/L, untere Grenze des 95%-Konfidenzbereichs (LL HC05) = 6.2 µg/L, Verhältnis HC05/LL HC05 = 2.2 (Mass für die Unsicherheit des HC05).

Die SSD alleinig für Primärproduzenten ist normalverteilt (Tabelle A10-12, Abbildung A4 im Appendix). Der HC5 entspricht 13.85 µg/L. Standardmässig wird ein AF von 10 auf den HC5 angewendet um den MAC-EQS_{SSD} zu bestimmen. Es wird vorgeschlagen den AF auf 8 zu reduzieren, da der Wirkmechanismus bekannt ist und die SSD für die sensitivste taxonomische Gruppe angefertigt wurde und weil das niedrige Verhältnis zum HC5/LL von 1.9 für eine hohe Sicherheit bei der Bestimmung des HC5 spricht. Allerdings sollte nach TGD for EQS (EC, 2011, S. 41) eine SSD bevorzugt aus mehr als 15 Datenpunkten (hier 13), mindestens aber 10 Datenpunkten bestehen, was bei der Wahl des AF berücksichtigt werden sollte. Dies ergibt folgenden MAC-EQS:

MAC-EQS Schlussfolgerung:

Der MAC-EQS aus der AF-Methode liegt bei 1.9 μ g/L und jener aus der SSD Methode bei 1.7 μ g/L. Beide Werte sind sehr ähnlich, da aber die SSD-Methode verlässlicher ist und nach dem TGD for EQS (EC 2011) bevorzugt werden sollte, wird der MAC-EQS (SSD) = **1.7 \mug/L** gewählt.

8.3. MAC-EQS aus Mikro-/Mesokosmosstudien

Es liegen keine validen Effektdaten aus Mikro- oder Mesokosmosstudien vor, mit denen sich eine MAC-EQS_{SSD} herleiten liesse.

9. Bewertung des Bioakkumulationspotentials und der sekundären Intoxikation

Nach dem TGD for EQS (EC, 2011) soll zur Abschätzung des Risikos einer sekundären Intoxikation zunächst das Bioakkumulationspotential einer Substanz bestimmt werden. Dabei liefert ein gemessener Biomagnifikationsfaktor (BMF) von >1 oder ein Biokonzentrationsfaktor (BCF) >100 einen Hinweis auf ein Bioakkumulationspotential. Liegen keine verlässlichen BMF oder BCF Daten vor, kann stattdessen der log K_{OW} zur Abschätzung verwendet werden, welcher ab einem Wert von >3 auf ein Bioakkumulationspotential hinweist.

Im Monograph der EU (EC Monograph, 1999) wird ein experimentell ermittelter BCF-Wert zwischen 2.6 und 3.6 angegeben. BCF-Werte zwischen 1-10 sprechen für ein schwaches Bioakkumulationspotential. Ebenso wurde ein sehr niedriger BMF in Fischen (*Perca fluviatilis* und *Cyprinus carpio*) von \leq 0.001 experimentell bestimmt (Lazartigues *et al.* 2013). Allerdings wurden die Fische in dieser Studie einer Mixtur von 13 verschiedenen Pestiziden exponiert, was die Belastbarkeit der Ergebnisse einschränkt. Mit einem Wertebereich von 2.5 - 2.87 liegt der log K_{OW} von Isoproturon ebenfalls unter 3. Somit ist eine Bioakkumulationsabschätzung nicht notwendig und das Risiko einer sekundären Intoxikation kann als gering angesehen werden.

10. Schutz der aquatischen Organismen

Der Effektdatensatz für Isoproturon umfasst alle 3 trophischen Ebenen bei den Kurzzeit- und Langzeittoxizitäten. Primärproduzenten stellen dabei die empfindlichste Organismengruppe dar.

Der chronische AA-EQS von 0.64 μ g/L ist doppelt so hoch wie der derzeitigen Wert der EU von 0.32 μ g/L. Der EU Wert beruht jedoch auf einer Studie, die 2014 neubewertet und als invalide eingestuft wurde (Fischer 1986, zitiert in EC (2014), Annex B.9, S. 44).

Der MAC-EQS liegt bei 1.7 μ g/L und derjenige der EU bei 1.0 μ g/L. Die EU berechnet ihren MAC-QS basierend auf dem Wert der marinen Alge *Phaeodactylum tricornutum*, der mit einem Operator "≥" angegeben wurde, nämlich EC50 ≥10 μ g/L. In diesem Bericht beruht der MAC-EQS im Gegensatz auf einer SSD.

Die beiden chronischen und akuten Qualitätsnormen sollten einen ausreichenden Schutz für alle aquatischen Organismen unterschiedlicher trophischer Ebenen bieten. Dennoch besteht noch eine gewisse Unsicherheit. Dies liegt zum einen an dem Vorhandensein einiger niedriger Effektdaten, die allerdings nicht als klar Verlässlich eingestuft werden konnten. So wurde der in der Studie von Larras *et al.* (2014) angegebene EC10 von 0.21 μ g/L als nicht verlässlich eingestuft, u.a. da die niedrigste Expositionskonzentration 71-fach über dem berechneten EC10 lag. In einem Mesokosmenexperiment mit natürlichen Algengemeinschaften in dem Isoproturon als Teil einer Formulierung (ARELON 500) getestet wurde, ergab sich ein NOEC von 1.5 μ g (a.i.)/L für das Phyllum Chrysophyta und *Nitzschia palea* (Müller 2006, zitiert in EC (2014). Ein vergleichbarer experimenteller Wert für Isoproturon (technisch) fehlt leider um die Schutzfunktion des MAC-EQS noch weiter zu untermauern. Bei den Protozoa, Fadenwürmern und

Stachelhäutern liegen nur EC50-Werte mit einem ">" Operator vor, da diese Werte jedoch bei über 500 µg/L liegen, werden auch diese Arten mit diesem MAC-EQS geschützt. Es wäre empfehlenswert die Wirkung von Isoproturon auf Amphibien genauer zu untersuchen, um eine Gefährdung dieser taxonomischen Gruppe auszuschliessen.

Eine weitere Quelle der Unsicherheit besteht hinsichtlich des Haupttransformationsprodukt Desmethyl-Isoproturon. Dieses wirkt ähnlich toxisch auf Primärproduzenten wie Isoproturon selbst. Eine Risikobewertung von Desmethyl-Isoproturon wird daher empfohlen. Tatsächlich hat die Europäische Kommission gegen eine erneuerte Zulassung von Isoproturon entschieden (EC 2016). Als Gründe werden im finalen Review Report unter anderem ein hohes Risiko für aquatische Organismen durch Desmethyl-Isoproturon angebracht.

11. Änderungen gegenüber der Version vom 20.04.2012

Neben den Effektdaten aus der öffentlichen Literatur kamen eine Vielzahl von Effektdaten aus dem Renewal Assessment Report (EC 2014) hinzu. In diesem wurden auch Studien neubewertet und zum Teil invalidiert. So wurde auch jene Studie invalidiert, welche vor der Aktualisierung die Schlüsselstudie für die Ableitung des AA-EQS (AF) war. Durch hinzukommende und invalidierte Effektdaten ergab sich auch eine Änderung des von der SSD abgeleiteten MAC-EQS, welcher sich gegenüber dem alten MAC-EQS verdoppelt hat. Des Weiteren sind in Tabelle 2 Toxizitätsdaten für Desmethyl-Isoproturon, Hauptabbauprodukt von Isoproturon, aufgelistet. Dieses zeigt eine nur wenig geringere Toxizität im Vergleich zum Isoproturon

12. Referenzen

- Agritox (2012) Online Datenbank: (Base de données sur les substances actives phytopharmaceutiques) http://www.dive.afssa.fr/agritox/php/sa.php?sa=51 [Letzte Abfrage 17.04.2012].
- Anton F., Ariz M. and Alia M. (1993) Ecotoxic effects of four herbicides (glyphosate, alachlor, chlortoluron and isoproturon) on the algae *Chlorella pyrenoidosa* Chick. Science of the total environment 134: 845-851
- Backhaus T., Faust M., et al. (2004) Joint algal toxicity of phenylurea herbicides is equally predictable by concentration addition and independent action. Environmental Toxicology and Chemistry 23(2): 258-264
- Bi Fai P., Grant A. and Reid B. (2007) Chlorophyll a fluorescence as a biomarker for rapid toxicity assessment. Environmental Toxicology and Chemistry 26(7): 1520-1531
- Bi Y.F., Miao S.S., Lu Y.C., Qiu C.B., Zhou Y., Yang H. (2012): Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae. J. Hazard. Mater. 243, 242-249.
- Bolton E., Wang Y, et al. (2008) PubChem: Integrated Platform of Small Molecules and Biological Activities. Chapter 12 IN Annual Reports in Computational Chemistry, Volume 4, American Chemical Society, Washington, DC, 2008 Apr.
- Boxall A.B., Fogg L.A., Ashauer R., Bowles T., Sinclair C.J., Colyer A., Brain R.A. (2013): Effects of repeated pulsed herbicide exposures on the growth of aquatic macrophytes. Environ. Toxicol. Chem. 32, 193-200.
- Bruns E. and Knacker T. (1998) Untersuchung der Wirkung gefährlicher Stoffe auf aquatische Organismen zur Ableitung von Zielvorgaben in Oberflächengewässern. ECT Oekotoxikologie Gmbh D-65439 Florsheim am Main. Im Auftrag des Umweltbundesamtes.
- Cooke CM, Shaw G, Collins CD. (2004): Determination of solid–liquid partition coefficients (K d) for the herbicides isoproturon and trifluralin in five UK agricultural soils. Environmental Pollution.132(3):541-52.
- Debenest T., Pinelli E., et al. (2009) Sensitivity of freshwater periphytic diatoms to agricultural herbicides. Aquatic toxicology 93(1): 11-17
- Dengler D. (2001): Testing of Toxic Effects of Protugan Technical on the Diatomea Navicula pelliculosa.
- Dengler D. (2002a): Testing of Toxic Effects of Des-methyl-Isoproturon Standard on the Single Cell Green Alga *Pseudokirchneriella subcapitata.*
- Dengler D. (2002b): Testing of toxic effects of Protugan 80 WG on the single cell green alga *Desmodesmus* subspicatus.
- Dewez D., Didur O., *et al.* (2008) Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga *Scenedesmus obliquus*. Environmental Pollution 151(1): 93-100
- Dighe R.P. (1991) Reproduction test in *Daphnia magna* with Isoproturon technical of Montari Industries LTD., New Dehli. 1116 not GLP, unpublished WAT95-00643[Zitiert in EC Monograph, 1999].
- Dorigo U., Bourrain X., et al. (2004) Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. The Science of the Total Environment 318(1-3): 101-114
- Douglas M.T., Sewell I.G. and Macdonald I.A. (1989) The prolonged toxicity of Isoproturon to rainbow trout (*Salmo gairdneri*). A41197 not GLP, unpublished WAT94-00682 [Zitiert in EC Monograph, 1999].
- EC Monograph (1999) Monograph is submitted to support first inclusion of the existing active substance isoproturon in Annex I of the Council Directive 91/414/EEC, according to Commission Regulations (EEC) No 3600/92 and (EC) No 993/94.
- EC (2003) Review report for the active substance Isoproturon. Finalised in the Standing Committee on Plant Health at its meeting on 7 December 2001 in view of the inclusion of Isoproturon in Annex I of Directive 91/414/EEC. SANCO/3045/99-final. Brussels: European Comission Directorate-General Health & Consumer Protection. Europäische Kommission (EC).

- EC (2005) Environmental Quality Standards (EQS). Substance Data Sheet. Priority Substance No. 19 Isoproturon. Final version, Brussels. Europäische Kommission (EC).
- EC (2011): Technical Guidance For Deriving Environmental Quality Standards. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance Document No. 27. Europäische Kommission (EC).
- EC (2014): Renewal Assessment Report (RAR) on the active substance isoproturon prepared by the rapporteur Member State Germany in the framework of Regulation (EU) No 1141/2010, February 2014.
- EC (2016), Final Review report for the active substance isoproturon, finalised in the Standing Committee on Plants, Animals, Food and Feed at its meeting on 15 April 2016 in view of the non-renewal of approval of isoproturon as active substance in accordance with Regulation (EC) No 1107/2009. Commission staff working document, SANTE/12121/2015 Rev. 2.
- EPI (2011) Version 4.10 .The EPI (Estimation Programs Interface) Suite™ . A Windows®-based suite of physical/chemical property and environmental fate estimation programs developed by the EPA's Office of Pollution Prevention Toxics and Syracuse Research Corporation (SRC).
- ETOX (2012) Information System Ecotoxicology and Environmental Quality Targets. Umweltbundesamt, Dessau-Roßlau. (Letzte Abfrage 18.04.2012).
- EU (2005): Environmental Quality Standards (EQS), Substance data sheet for priority substance N°13: Diuron, CAS-N° 330-54-1, 17p.
- Fischer R. (1986) The Effect of Isoproturon- substance, technical Identification code: HOE 016410 OH ZD00 0004 to *Scenedesmus subspicatus* (Green alga) in a Growth Inhibition Test. A32857.not GLP, unpublished. WAT94-00673. [Zitiert in EC Monograph, 1999].
- Greulich K., Hoque E. and Pflugmacher S. (2002) Uptake, metabolism, and effects on detoxication enzymes of isoproturon in spawn and tadpoles of amphibians. Ecotoxicology and Environmental Safety 52(3): 256-266
- Grunert B. (1992) Alga, Growth Inhibition Test (OECD- Guideline 201) Isoproturon. tech. 922043522 GLP, unpublished. WAT94-00002. [Zitiert in EC Monograph, 1999].
- Grünwald H., M., (2003) Dissertation: Effects of a Pesticide Mixture on Plankton in Freshwater Mesocosms from single substance studies to combination impacts. Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Department Ökologie Fachgebiet Ökotoxikologie
- GSBL (2012) Gemeinsamer Stoffdatenpool Bund / Länder. http://www.gsbl.de/.
- Gustavson K., Møhlenberg F. and Schlüter L. (2003) Effects of exposure duration of herbicides on natural stream periphyton communities and recovery. Archives of environmental contamination and toxicology 45(1): 48-58
- Handley J.W., Wetton P.M. and Bartlett A.J. (1991) The acute Toxicity of Isoproturon to Rainbow trout (*Oncorhynchus mykiss*). 68/30 GLP, unpublished WAT94-00678. [Zitiert in EC Monograph, 1999].
- Heintze A. (2002): Assessment of toxic effects of Protugan 80 WG on *Daphnia magna* using the 48 h acute immobilisation test.
- His É. and Seaman M. (1993) Effects of twelve pesticides on larvae of oysters (Crassostrea gigas) and on two species of unicellular marine algae (Isochrysis galbana and Chaetoceros calcitrans). International Council for the Exploration of the Sea, ICES-CM-1993/E, Copenhagen, Denmark (http://archimer.ifremer.fr/doc/00018/12949/9922.pdf letzte Abgrage 20.04.2012).
- Hoberg J. (1998a) Isoproturon Toxicity to the duckweed, *Lemna gibba*. 98-5-7326 not GLP, unpublished WAT98-00545 [Zitiert in EC Monograph, 1999].
- Hoberg J. (1998b) Isoproturon Toxicity to the freshwater diatom, *Navicula pelliculosa*. 98-5-7319 not GLP, unpublished WAT98-00544 [Zitiert in EC Monograph, 1999].
- Hurtado-Sánchez M.C., Romero-González R., Rodríguez-Cáceres M.I., Durán-Merás I., Frenich A.G. (2013): Rapid and sensitive on-line solid phase extraction-ultra high performance liquid chromatography–electrospray-tandem mass spectrometry analysis of pesticides in surface waters. Journal of Chromatography A 1305, 193-202.

- Katdare S.M. (1991) Acute toxicity test in fish of Isoproturon technical of Montari Industries LTD., New Dehli. 1117 not GLP, unpublished WAT95-00640. [Zitiert in EC Monograph, 1999].
- Kirby M.F. and Sheahan D.A. (1994) Effects of atrazine, isoproturon, and mecoprop on the macrophyte Lemna minor and the alga Scenedesmus subspicatus. Bulletin of Environmental Contamination and Toxicology 53(1): 120-126
- Klimisch H.J., Andreae M. and Tillmann U. (1997) A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology 25(1): 1-5
- Knacker T., Hilt J. and Diehl T. (1989) A Study of the Acute Immobilisation to *Daphnia* of Isoproturon according to the OECD Guideline for Testing of Chemicals No- 202; Part I. BE-ET-01-89-02-DAK-5 not GLP, unpublished WAT94-00675. [Zitiert in EC Monograph, 1999].
- Knight B. and Buchanan J. (1997) Isoproturon technical Alga, Growth inhibition test (72 h, EC50). 14109 not GLP, unpublished WAT97-00055 [Zitiert in EC Monograph, 1999].
- Kroos M., Christl H. (2006): Evaluation of direct and indirect effects of IPU as an ARELON 500 Formulation on *Lemna minor* in Outdoor Enclosures (Multi-site study).
- Larras F., Bouchez A., Rimet F., Montuelle B. (2012): Using bioassays and species sensitivity distributions to assess herbicide toxicity towards benthic diatoms. PloS one 7, e44458.
- Larras F., Keck F., Montuelle B., Rimet F., Bouchez A. (2014): Linking diatom sensitivity to herbicides to phylogeny: A step forward for biomonitoring? Environ. Sci. Technol. 48, 1921-1930.
- Larras F., Montuelle B., Bouchez A. (2013): Assessment of toxicity thresholds in aquatic environments: Does benthic growth of diatoms affect their exposure and sensitivity to herbicides? Sci. Total Environ. 463-464, 469-477.
- Lazartigues A., Thomas M., Banas D., Brun-Bellut J., Cren-Olivé C., Feidt C. (2013): Accumulation and half-lives of 13 pesticides in muscle tissue of freshwater fishes through food exposure. Chemosphere 91, 530-535.
- Ma J., Lin F., *et al.* (2003) Toxicity of 21 herbicides to the green alga *Scenedesmus quadricauda*. Bulletin of Environmental Contamination and Toxicology 71(3): 594-601
- Ma J., Wang S., *et al.* (2006) Toxicity assessment of 40 herbicides to the green alga *Raphidocelis subcapitata*. In Ecotoxicology and Environmental Safety Vol. 63. pp 456-462
- Masojídek J., Souček P., Máchová J., Frolík J., Klem K., Malý J. (2011): Detection of photosynthetic herbicides: Algal growth inhibition test vs. electrochemical photosystem II biosensor. Ecotoxicology and Environmental Safety 74, 117-122.
- Mc Elligott A. (1999): Isoproturon Daphnia magna reproduction test under static renewal conditions.
- Moermond C T A, Kase R, Korkaric M, Ågerstrand M (2016): CRED: Criteria for reporting and evaluating ecotoxicity data. Environmental Toxicology and Chemistry 35, 1297-1309.
- Mohr S., Schott J., Maletzki D., Hünken A. (2013): Effects of toxicants with different modes of action on Myriophyllum spicatum in test systems with varying complexity. Ecotoxicology and Environmental Safety 97, 32-39.
- Mostafa F.I.Y. and Helling C.S. (2001) Isoproturon degradation as affected by the growth of two algal species at different concentrations and pH values. Journal of Environmental Science and Health, Part B 36(6): 709-727
- Müller W. (2006): Evaluation of direct and indirect effects of IPU as an ARELON 500 Formulation on Aquatic Organisms in Outdoor Enclosures (Multi-site study).
- Neuwoehner J., Junghans M., Koller M. and Escher B.I. (2008) QSAR Analysis and specific endpoints for classifying the physiological modes of action of biocides in synchronous green algae. Aquatic Toxicology 90(1): 8-18
- Nitschke L., Wilk A., et al. (1999) Biodegradation in laboratory activated sludge plants and aquatic toxicity of herbicides. Chemosphere 39(13): 2313-2323
- Noack M. (2002): Acute immobilisation Test (48 h) to Daphnia magna Straus.

- OECD (2011). Freshwater alga and cyanobacteria, growth Inhibition test. OECD guidelines for testing of chemicals, No. 201. Organisation for Economic Cooperation and Development, Paris, France.
- Pavlic Z., Stjepanovic B., *et al.* (2006) Comparative sensitivity of green algae to herbicides using Erlenmeyer flask and microplate growth-inhibition assays. Bulletin of Environmental Contamination and Toxicology 76(5): 883-890
- Paris-Palacios S., Mosleh Y.Y., Almohamad M., Delehaut L., Conrad A., Arnoult F., Biagianti-Risbourg (2010) Toxic effects and bioaccumulation of the herbicide isoproturon in *Tubifex tubifex* (Oligocheate, Tubificidae): A study of significance of autotomy and its utility as a biomarker. Aquatic Toxicology 98: 8–14
- Peters A. (1993) Acute Toxicity of Isoproturon tech. on Carps (*Cyprinus carpio* L). 07/93/361 GLP, unpublished WAT94-00680. [Zitiert in EC Monograph, 1999].
- Prism (2009) GraphPad Prism version 5.00 for Windows, GraphPad Software, San Diego California USA.
- Quadir Q.F., Rahman A. (2015): Sorption kinetics of isoproturon and assessment of its Ecotoxicity on Lemna minor. Research in Agriculture Livestock and Fisheries 1, 13-18.
- Ratte M., Ratte H.T. (2014): Myriophyllum toxicity test: Result of a ring test using *M. aquaticum* and *M. spicatum* grown in a water-sediment system", OECD Environment, Health and Safety Publications, Series on Testing and Assessment, No. 206, OECD, Paris'.
- Riedl J., Schreiber R., Otto M., Heilmeier H., Altenburger R., Schmitt-Jansen M. (2015): Metabolic Effect Level Index Links Multivariate Metabolic Fingerprints to Ecotoxicological Effect Assessment. Environ. Sci. Technol. 49, 8096-8104.
- Rioboo C., Gonzalez O., *et al.* (2002) Physiological response of freshwater microalga (*Chlorella vulgaris*) to triazine and phenylurea herbicides. Aquatic toxicology 59(3-4): 225-235
- Ritter A. (1989) Isoproturon, Substance technical (HOE 016410 00 ZD99 0004): 96-hour acute Toxicity study (LC50) in the Rainbow trout. 233403 not GLP, unpublished WAT94-00681. [Zitiert in EC Monograph, 1999].
- Scheerbaum D. (2002): Isoproturon technical: Alga, Growth inhibition test with *Pseudokirchneriella subcapitata*, 72 h (formerly *Selenastrum capricornutum*).
- Scheerbaum D. (2003): Isoproturon Technical Effects in the Development of *Chironomus riparius* in a Water-Sediment System.
- Scheerbaum D. (2004): Alga, grwoth inhibition test with Navicula pelliculosa, 72 h.
- Scheerbaum D. (2011a): Protugan 50 SC, Alga, growth inhibition test with Navicula pelliculisa, 72 hours.
- Scheerbaum D. (2011b): Protugan 50 SC: Aquatic plant toxicity test with Lemna minor, 7 d.
- Schmitt-Jansen M., Reiners S. and Altenburger R. (2004) Biozönotisches Testverfahren (PICT-Konzept). Umweltwissenschaften und Schadstoff-Forschung 16(2): 85-91
- Schoot Uiterkamp A.J.M. (1988a) The acute toxicity of Isoproturon to *Brachydanio rerio*. R 88/173 not GLP, unpublished WAT96-00082[Zitiert in EC Monograph, 1999].
- Schoot Uiterkamp A.J.M. (1988b) The acute toxicity of Isoproturon to *Daphnia magna*. R 88/172 not GLP, unpublished WAT96-00083. [Zitiert in EC Monograph, 1999].
- Schoot Uiterkamp A.J.M. (1988c) Effect of Isoproturon on the growth of the alga Selenastrum capricornutum. R 88/203 not GLP, unpublished WAT96-00084. [Zitiert in EC Monograph, 1999].
- Schuytema G.S. and Nebeker A.V. (1998) Comparative toxicity of diuron on survival and growth of Pacific treefrog, bullfrog, red-legged frog, and African clawed frog embryos and tadpoles. Archives of environmental contamination and toxicology 34(4): 370-376
- Taylor S. (2012): The effect of isoproturon on aquatic macrophyte, algal and invertebrate communities in freshwater microcosms.

- Thun S. (1992a) 21 d Reproduction Test in *Daphnia* Test Article: "Isoproturon tech.". 80-91-0843-02-9 GLP, unpublished WAT94-00677. [Zitiert in EC Monograph, 1999].
- Thun S. (1992b) Acute Toxicity in Daphnia magna Test Article: "Isoproturon tech." Test. 80-91-0843-01-92 GLP, unpublished. WAT94-00674 [Zitiert in EC Monograph, 1999].
- Thun S. (1992c) Acute Toxicity in Golden orfe (*Leuciscus idus*) Test Article: "Isoproturon tech.". 80-91-0843-03-92 GLP, unpublished WAT94-00679. [Zitiert in EC Monograph, 1999].
- Thun S. (1992d) Prolonged Toxicity Test in Rainbow trout (*Oncorhynchus mykiss*) Test Article: "Isoproturon". 80-91-0843-04-92 GLP, unpublished WAT94-00684. [Zitiert in EC Monograph, 1999].
- Tomlin C.D.S. (2006) The Pesticide Manual, British Crop Production Council (BCPC), 14th Edition.
- Traunspurger W., Schäfer H. and Remde A. (1996) Comparative investigation on the effect of a herbicide on aquatic organisms in single species tests and aquatic microcosms. Chemosphere 33(6): 1129-1141
- Tunić T., Knežević V., Kerkez D., Tubić A., Šunjka D., Lazić S., Brkić D., Teodorović I. (2015): Some arguments in favor of a Myriophyllum aquaticum growth inhibition test in a water-sediment system as an additional test in risk assessment of herbicides. Environ. Toxicol. Chem. 34, 2104-2115.
- Umweltbundesamt (2011) Stoffdatenbank für bodenschutz- /umweltrelevante Stoffe: STARS Version 4.2.1 Umweltbundesamt Dessau-Roßlau
- UN (2015): Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 6th revised edition ed. United Nations, New York.
- Vallotton N., Eggen R.I.L., et al. (2008) Effect of pulse herbicidal exposure on Scenedesmus vacuolatus: a comparison of two photosystem II inhibitors. Environmental Toxicology and Chemistry 27(6): 1399-1407
- van Vlaardingen P., Traas T., et al. (2004) ETX Bilthoven, Niederlande: RIVM National Institute of Public Health and the Environment
- Vial A. (1989) Test for acute Toxicity of CGA 18731 technical to *Daphnia magna*. 891403 GLP, unpublished WAT94-01471 [Zitiert in EC Monograph, 1999].
- Weber D., Schaefer D., Dorgerloh M., Bruns E., Goerlitz G., Hammel K., Preuss T.G., Ratte H.T. (2012): Combination of a higher-tier flow-through system and population modeling to assess the effects of time-variable exposure of isoproturon on the green algae *Desmodesmus subspicatus* and *Pseudokirchneriella subcapitata*. Environ. Toxicol. Chem. 31, 899-908.
- Wüthrich V. (1990) Influence of Isoproturon, Substance technical (HOE 016410 00 ZD99 0004) on the reproduction of *Daphnia magna*. A42968 GLP, unpublished WAT94-01469. [Zitiert in EC Monograph, 1999].

Appendix

 Tabelle A 1: "Goodness of fit" für die SSD der chronischen Effektdaten (NOEC/EC10) aller taxonomischen

 Gruppen - berechnet mit dem Programm ETX 2.1 (van Vlaardingen *et al.* 2004).

Anderson-D	Anderson-Darling test for normality							
Sign. level	0.1 0.05 0.025 0.01	Critical 0.631 0.752 0.873 1.035	Normal? Accepted Accepted Accepted Accepted	AD Statistic: n:	0.619 10			
Kolmogorov	-Smirno	ov test for norm	nality					
Sign. level	0.1 0.05 0.025 0.01	Critical 0.819 0.895 0.995 1.035	Normal? Accepted Accepted Accepted Accepted	KS Statistic: n:	0.805198 10			
Cramer von	Mises	test for normal	ity					
Sign. level	0.1 0.05 0.025 0.01	Critical 0.104 0.126 0.148 0.179	Normal? Accepted Accepted Accepted Accepted	CM Statistic: n:	0.08552 10			

Abbildung A1: Histogramm für die SSD der chronischen Effektdaten (NOEC/EC10) für alle taxonomischen Gruppen - berechnet mit dem Programm ETX 2.1 (van Vlaardingen *et al.* 2004).

 Tabelle A 2:
 Von der SSD der chronischen Effektdaten (NOEC/EC10) für alle taxonomischen Gruppen abgeleitete Parameter (in ng/L)- berechnet mit dem Programm ETX 2.1 (van Vlaardingen *et al.* 2004).

Parameters of the normal distribution

i arameters o	the norman	
Name	Value	Description
mean	5.061737	mean of the log toxicity values
s.d.	1.281895	sample standard deviation
n	10	sample size

HC5 results

Name	Value	log10(Value)
LL HC5	21.38881	1.330187
HC5	759.3172	2.880423
UL HC5	5723.562	3.757666
sprHC5	267.5961	2.42748

FA At HC5 results

Name	Value	Description
FA lower	0.612	5% confidence limit of the FA at standardised median logHC5
FA median	5	50% confidence limit of the FA at standardised median logHC5
FA upper	20.036	95% confidence limit of the FA at standardised median logHC5

HC50 results

Name	Value	log10(Value)
LL HC50	20827.94	4.318646
HC50	115275.5	5.061737
UL HC50	638010	5.804827
sprHC50	30.63241	1.486181

FA At HC50 results

Name	Value	Description
FA lower	30.14801	5% confidence limit of the FA at standardised median logHC50
FA median	50	50% confidence limit of the FA at standardised median logHC50
FA upper	69.85199	95% confidence limit of the FA at standardised median logHC50

Tabelle A 3: NOECs/EC10 welche f
 ür die SSD aus chronischen Effektdaten aller taxonomische Gruppen verwendet wurden, sortiert nach Toxizit
 ät.

NOEC/EC10 in ug/L	Art	Organismengruppe	Referenzen
6.4	Navicula pelliculosa	Algen (Diatomeen)	Hoberg, 1998b
8	Desmodesmus subspicatus	Algen (Grünalgen)	Traunspurger et al., 1996
8.9	Scenedesmus vacuolatus	Algen (Grünalgen)	Backhaus et al., 2004
13	Chlamydomonas reinhardi	Algen (Grünalgen)	Traunspurger et al., 1996
18	Lemna minor	Wasserpflanzen	Nitschke et al., 1999
120	Daphnia magna	Kleinkrebse	Mc Elligott 1999,
700	Tetrahymena pyriformis	Ciliaten	Traunspurger et al., 1996
1000	Chironomus riparus	Insekten	Scheerbaum 2003
1049	Oncorhynchus mykiss	Fisch	Geom. Mittelwert aus [Douglas et al, 1989Thun 1992d]
44100	Pseudomonas putida	Bakterien	Bruns & Knacker, 1998

 Tabelle A4: "Goodness of fit" für die SSD der chronischen Effektdaten (NOEC/EC10) für Algen und

 Wasserpflanzen - berechnet mit dem Programm ETX 2.1 (van Vlaardingen *et al.* 2004).

Anderson-D	arling to	est for normali	ty		
Sign. level		Critical	Normal?		
	0.1	0.631	Accepted		
	0.05	0.752	Accepted	AD Statistic:	0.263567
	0.025	0.873	Accepted	n:	5
	0.01	1.035	Accepted		
Kolmogorov	/-Smirno	ov test for norr	nality		
Sign. level		Critical	Normal?		
	0.1	0.819	Accepted		
	0.05	0.895	Accepted	KS Statistic:	0.582486
	0.025	0.995	Accepted	n:	5
	0.01	1.035	Accepted		
Cramer von	Mises	test for normal	ity		
Sign. level		Critical	Normal?		
	0.1	0.104	Accepted		
	0.05	0.126	Accepted	CM Statistic:	0.01949
	0.025	0.148	Accepted	n:	5
	0.01	0.179	Accepted		

SSD Histogram and PDF

Abbildung A2: Histogramm für die SSD der chronischen Effektdaten (NOEC/EC10) für Algen und Wasserpflanzen - berechnet mit dem Programm ETX 2.1 (van Vlaardingen *et al.* 2004).

 Tabelle A5: Parameter der SSD der chronischen Effektdaten (NOEC/EC10) für Algen und Pflanzen

 berechnet mit dem Programm ETX 2.1 (van Vlaardingen *et al.* 2004)

Parameters	of the norm	al distribution	
Name	Value	Description	
mean	4.005575	mean of the log toxicity values	
s.d.	0.178543	sample standard deviation	
n	5	sample size	
HC5 results			
Name	Value	log10(Value)	
LL HC5	1799.76		3.255215
HC5	4874.119		3.687896
UL HC5	7237.128		3.859566
sprHC5	4.021163		0.604352
FA At HC5 r	esults		
Name	Value	Description	
FA lower	0.154	5% confidence limit of the FA at standardised median logHC5	
FA median	5	50% confidence limit of the FA at standardised median logHC5	
FA upper	31.526	95% confidence limit of the FA at standardised median logHC5	
HC50 result	s		

110001050			
Name	Value	log10(Value)	
LL HC50	6844.687		3.835354
HC50	10129.2		4.005575
UL HC50	14989.83		4.175797
sprHC50	2.189995		0.340443

 Tabelle A6:
 chronischen Effektdaten (NOEC/EC10) f

 Gehenfolge steigender EC50-Werte.
 chronischen Effektdaten (NOEC/EC10) f

NOEC/EC10 in ug/L	Art	Organismengruppe	Referenzen
6.4	Navicula pelliculosa	Algen (Diatomeen)	Hoberg, 1998b
8	Desmodesmus subspicatus	Algen (Grünalgen)	Traunspurger <i>et al.</i> , 1996
8.9	Scenedesmus vacuolatus	Algen (Grünalgen)	Backhaus et al., 2004
13	Chlamydomonas reinhardi	Algen (Grünalgen)	Traunspurger <i>et al.</i> , 1996
18	Lemna minor	Wasserpflanzen	Nitschke <i>et al.</i> , 1999

 Tabelle A7: "Goodness of fit" für die SSD der akuten EC50/LC50 Werte für alle taxonomischen Gruppen

 berechnet mit dem Programm ETX 2.0 (van Vlaardingen *et al.* 2004).

Anderson-	Darling	test for nor	mality	
Sign. level		Critical	Normal?	
	0.1	0.631	Rejected	
	0.05	0.752	Rejected	
	0.025	0.873	Rejected	
	0.01	1.035	Rejected	
		AD Statistic:	2.20; n=18	
Kolmogor	ov-Smi	rnov test for	normality	
Sign. level		Critical	Normal?	
	0.1	0.819	Rejected	
	0.05	0.895	Rejected	
	0.025	0.995	Rejected	
	0.01	1.035	Rejected	
		AD Statistic:	1.37; n=18	
Cramer vo	n Mise	s test for nor	mality	
Sign. level		Critical	Normal?	
	0.1	0.104	Rejected	
	0.05	0.126	Rejected	
	0.025	0.148	Rejected	
	0.01	0.179	Rejected	
		AD Statistic:	0.37; n=18	

SSD Histogram and PDF

Abbildung A3: Histogramm für die SSD der akuten EC50/LC50 Werte für alle taxonomischen Gruppen - berechnet mit dem Programm ETX 2.0 (van Vlaardingen *et al.* 2004).

Tabelle A8: HC5 der SSD der akuten EC50/LC50 Werte für alle taxonomischen Gruppen - berechnet mitdem Programm ETX 2.0 (van Vlaardingen *et al.* 2004).

Parameters of the normal distribution

i arameter 3	or the norm	
Name	Value	Description
mean	5.423418	mean of the log toxicity values
s.d.	1.285293	sample standard deviation
n	18	sample size

HC5 results

Name	Value	log10(Value)
LL HC5	186.493	2.270662
HC5	1868.164	3.271415
UL HC5	8736.34	3.94133
sprHC5	46.84541	1.670667

FA At HC5 results

Name	Value	Description
FA lower	1.162	5% confidence limit of the FA at standardised median logHC5
FA median	5	50% confidence limit of the FA at standardised median logHC5
FA upper	14.808	95% confidence limit of the FA at standardised median logHC5

HC50 results

Name	Value	log10(Value)
LL HC50	78779.04	4.896411
HC50	265105.3	5.423418
UL HC50	892125.7	5.950426
sprHC50	11.3244	1.054015

FA At HC50 results

Name	Value	Description
FA lower	34.91207	5% confidence limit of the FA at standardised median logHC50
FA median	50	50% confidence limit of the FA at standardised median logHC50
FA upper	65.08793	95% confidence limit of the FA at standardised median logHC50

EC50 in ug/L	Art	Organismengruppe	Referenzen
19	Chlorella vulgaris	Algen (Grünalgen)	Rioboo et al., 2002
21	Scenedesmus quadricauda	Algen (Grünalgen)	Ma et al., 2003
31	Lemna minor	Wasserpflanzen (Monocotyledon)	Kirby & Sheahan, 1994
34	Myriophyllum spicatum	Wasserpflanzen (Dicotyledon)	Riedl et al. 2015
37	Lemna gibba	Wasserpflanzen (Monocotyledon)	Hoberg, 1998a
41.6	Chlamydomonas reinhardii	Algen (Grünalgen)	Geomean [Traunspurger et al., 1996, Bi et al. 2012]
46	Navicula pelliculosa	Algen (Diatomeen)	Hoberg, 1998b
47.1	Scenedesmus vacuolatus	Algen (Grünalgen)	Backhaus et al., 2004
54	Chlorella Kessleri	Algen (Grünalgen)	Pavlic et al., 2006
98	Raphidocelis subcapitata	Algen (Grünalgen)	Scheerbaum 2002]
103	Scenedesmus obliquus	Algen (Grünalgen)	Dewez et al., 2008
120	Myriophyllum aquaticum	Wasserpflanzen (Dicotyledon)	Ratte and Ratte 2014)
169	Desmodesmus subspicatus	Algen (Grünalgen)	Masojídek et al., 2010]
580	Daphnia magna	Kleinkrebse	Vial, 1989
34295	Onchorynchus mykiss	Fische	Geomean [Ritter, 1989, Revision Assessment Report 2014]
47227	Cyprinus carpio	Fische	Geomean [Peters 1993, Assessment Report 2014, EC 2014]
52000	Poecilia reticulata	Fische	Katdare, 1991
58600	Pseudomonas putida	Bakterium	Bruns & Knacker, 1998

Tabelle A9: Daten, aus denen die SSD der akuten EC50-Werte f

 Gruppen besteht - in der Reihenfolge steigender EC50-Werte.

 Tabelle A10: "Goodness of fit" für die SSD der akuten EC50-Werte für Algen und Wasserpflanzen - berechnet mit dem Programm ETX 2.0 (van Vlaardingen *et al.* 2004).

Anderson-Darling test for normality					
Sign. level		Critical	Normal?		
	0.1	0.631	Accepted		
	0.05	0.752	Accepted	AD Statistic:	0.440917
	0.025	0.873	Accepted	n:	13
	0.01	1.035	Accepted		
Kolmogoro	ov-Smir	nov test for n	ormality		
Sign. level		Critical	Normal?		
	0.1	0.819	Accepted		
	0.05	0.895	Accepted	KS Statistic:	0.639954
	0.025	0.995	Accepted	n:	13
	0.01	1.035	Accepted		
Cramer von Mises test for normality					
Sign. level		Critical	Normal?		
	0.1	0.104	Accepted		
	0.05	0.126	Accepted	CM Statistic:	0.062844
	0.025	0.148	Accepted	n:	13
	0.01	0.179	Accepted		

SSD Histogram and PDF

Abbildung A4: Histogramm für die SSD der akuten EC50-Werte für Algen und Wasserpflanzen - berechnet mit dem Programm ETX 2.0 (van Vlaardingen *et al.* 2004).

Tabelle A11: HC5 der SSD der akuten EC50-Werte für Algen und Pflanzen - berechnet mit dem ProgrammETX 2.0 (van Vlaardingen *et al.* 2004)

Parameters of the normal distribution				
Name	Value	Description		
mean s.d. n	4.704983 0.285748 13	mean of the log toxicity values sample standard deviation sample size		
HC5 results				
Name	Value	log10(Value) Description		
LL HC5 HC5 UL HC5 sprHC5	8747.666 16708.11 24887 2.844987	3.941892lower estimate of4.222927median estimate4.395972upper estimate of0.45408spread of the HC	the HC5 of the HC5 f the HC5 5 estimate	
FA At HC5 results				
Name	Value	Description		
FA lower	0.849	5% confidence limit of the FA at standardised median logHC5		
FA median	5	50% confidence limit of the FA at standardised median logHC5		
FA upper	17.296	95% confidence limit of the FA at standardised median logHC5		
HC50 results				
Name	Value	log10(Value) Description		
LL HC50	36621.23	4.563733 lower estimate of	the HC50	
HC50	50697.1	4.704983 median estimate	of the HC50	
UL HC50	70183.23	4.846233 upper estimate o	f the HC50	
sprHC50	1.916463	0.2825 spread of the HC	50 estimate	
FA At HC50 results				
Name	Value	Description		
FA lower	32.4123	5% confidence limit of the FA at standardised i	median logHC50	
FA median	50	50% confidence limit of the FA at standardised median logHC50		
FA upper	67.5877	95% confidence limit of the FA at standardised median logHC50		

Tabelle A12: Daten, aus denen die SSD der akuten EC50-Werte für Algen und Wasserpflanzer	1 besteht - in
der Reihenfolge steigender EC50-Werte.	

EC50 in ug/L	Art	Organismengruppe	Referenzen
19	Chlorella vulgaris	Algen (Grünalgen)	Rioboo et al., 2002
21	Scenedesmus quadricauda	Algen (Grünalgen)	Ma et al., 2003
31	Lemna minor	Wasserpflanzen (Monocotyledon)	Kirby & Sheahan, 1994
34	Myriophyllum spicatum	Wasserpflanzen (Dicotyledon)	Riedl et al. 2015
37	Lemna gibba	Wasserpflanzen (Monocotyledon)	Hoberg, 1998a
41.6	Chlamydomonas reinhardii	Algen (Grünalgen)	Geomean [Traunspurger <i>et al.</i> , 1996, Bi <i>et al.</i> 2012]
46	Navicula pelliculosa	Algen (Diatomeen)	Hoberg, 1998b
47.1	Scenedesmus vacuolatus	Algen (Grünalgen)	Backhaus et al., 2004
54	Chlorella Kessleri	Algen (Grünalgen)	Pavlic et al., 2006
98	Raphidocelis subcapitata	Algen (Grünalgen)	Scheerbaum 2002]
103	Scenedesmus obliquus	Algen (Grünalgen)	Dewez et al., 2008
120	Myriophyllum aquaticum	Wasserpflanzen (Dicotyledon)	Ratte and Ratte 2014
169	Desmodesmus subspicatus	Algen (Grünalgen)	Masojídek <i>et al.</i> , 2010]