Stoffdatenblattentwurf für Cybutryn (Datenstand 29.12.2010; Einarbeitung des ECT-Gutachtens 08.02.2012)

Physikochemische Parameter

Tab. 1: Geforderte Identitäts- und physikochemische Parameter nach dem TGD for EQS (Commission of the European Communities 2011) für Cybutryn. Zusätzliche Eigenschaften wurden kursiv angegeben. Wenn bekannt wurden die angegebenen Werte zwischen experimentellen Werten (exp) und abgeschätzten, modellierten Werten (est) unterschieden.

IUPAC NameN'-tert-butyl-N-cyclopropyl-6- (methylthio)-1,3,5-triazine-2,4- diamineESIS (European Comission 2010)HandelsnameIrgarol 1051®Hall Jr et al. 1999Chemische Gruppes-TriazineHall Jr et al. 1999Strukturformel $\int_{K} H_{H_0} + H_{SC} + CH_{S}$ $K_{H_3} + CH_{S}$ OECD Toolbox 1.1.02 (LMC Oasis Laboratory of Mathematical Chemistry 2009)CAS-Nummer28159-98-0ESIS (European Comission 2010)EINECS-Nummer248-872-3ESIS (European Comission 2010)Summenformel $C_{11}H_{10}N_{5}S$ ESIS (European Comission 2010)	Eigenschaften	Wert	Referenz
(methylthio)-1,3,5-triazine-2,4- diamineComission 2010)HandelsnameIrgarol 1051 $^{\textcircled{m}}$ Hall Jr et al. 1999Chemische Gruppes-TriazineHall Jr et al. 1999Strukturformel $\int_{H_{10}} \int_{H_{10}} \int_$	IUPAC Name	N'-tert-butyl-N-cyclopropyl-6-	ESIS (European
diamineHandelsnameIrgarol 1051®Hall Jr et al. 1999Chemische Gruppes-TriazineHall Jr et al. 1999Strukturformel $\int_{N+} \int_{N+} $		(methylthio)-1,3,5-triazine-2,4-	Comission 2010)
HandelsnameIrgarol $1051^{\textcircled{\ensuremath{\mathbb{B}}}}$ Hall Jr et al. 1999Chemische Gruppes-TriazineHall Jr et al. 1999Strukturformel $\int_{H_1} H_1 \int_{H_2} \int_{H_3} H_1 \int_{H_3} \int_{H_4} H_1 \int_{H_4} H_2 \int_{H_4} H_1 \int_{H_$		diamine	
Chemische Gruppes-TriazineHall Jr et al. 1999Strukturformel $\int_{N+J} \int_{N+J} \int_{N$	Handelsname	Irgarol 1051 [®]	Hall Jr et al. 1999
Strukturformel $OECD Toolbox$ $1.1.02$ (LMC Oasis Laboratory of Mathematical Chase $1.1.02$ (LMC Oasis Laboratory of Mathematical Chemistry 2009)CAS-Nummer $28159-98-0$ ESIS (European Comission 2010)EINECS-Nummer $248-872-3$ ESIS (European Comission 2010)Summenformel $C_{11}H_{10}N_{5}S$ ESIS (European Comission 2010)	Chemische Gruppe	s-Triazine	Hall Jr et al. 1999
Image: CAS-Nummer28159-98-0Image: Laboratory of Mathematical Chemistry 2009)EINECS-Nummer248-872-3ESIS (European Comission 2010)SummenformelC11H10N5SESIS (European Comission 2010)	Strukturformel		OECD Toolbox
CAS-Nummer28159-98-0Laboratory of Mathematical Chemistry 2009)EINECS-Nummer248-872-3ESIS (European Comission 2010)SummenformelC11H10N5SESIS (European Comission 2010)			1.1.02 (LMC Oasis
NomeNomeMathematical ChaCAS-Nummer28159-98-0ESIS (European Comission 2010)EINECS-Nummer248-872-3ESIS (European Comission 2010)SummenformelC11H10N5SESIS (European Comission 2010)			Laboratory of
CAS-Nummer28159-98-0ESIS (European Comission 2010)EINECS-Nummer248-872-3ESIS (European Comission 2010)SummenformelC11H10N5SESIS (European Comission 2010)		N NH SH3	Mathematical
CAS-Nummer28159-98-0ESIS (European Comission 2010)EINECS-Nummer248-872-3ESIS (European Comission 2010)SummenformelC11H10N5SESIS (European Comission 2010)		N S	Chemistry 2009)
CAS-Nummer28159-98-0ESIS (European Comission 2010)EINECS-Nummer248-872-3ESIS (European Comission 2010)SummenformelC11H10N5SESIS (European Comission 2010)		CH3	
EINECS-Nummer 248-872-3 Comission 2010) Summenformel C11H10N5S ESIS (European Comission 2010)	CAS-Nummer	28159-98-0	ESIS (European
EINECS-Nummer248-872-3ESIS (European Comission 2010)SummenformelC11H10N5SESIS (European			Comission 2010)
Summenformel Consiston 2010 Summenformel C11H10N5S	EINECS-Nummer	248-872-3	ESIS (European
Summenformel $C_{11}H_{10}N_5S$ ESIS (European			Comission 2010)
	Summenformel	$C_{11}H_{19}N_5S$	ESIS (European
Comission 2010)			Comission 2010)
SMILES-code n(c(nc(n1)NC(C2)C2)NC(C)(C)C)c1S EPI Suite 4.10 (US	SMILES-code	n(c(nc(n1)NC(C2)C2)NC(C)(C)C)c1S	EPI Suite 4.10 (US
C EPA 2011)		С	EPA 2011)
Molekulargewicht $(g \cdot mol^{-1})$ 253.37 EPI Suite 4.10 (US	Molekulargewicht ($g \cdot mol^{-1}$)	253.37	EPI Suite 4.10 (US
EPA 2011)			EPA 2011)
Schmelzpunkt (°C) 148.44 (est), 128-133 (keine Angabe, EPI Suite 4.10 (US	Schmelzpunkt (°C)	148.44 (est), 128-133 (keine Angabe,	EPI Suite 4.10 (US
ob gemessen oder geschätzt) EPA 2011), Hall Jr		ob gemessen oder geschätzt)	EPA 2011), Hall Jr
et al. 1999			et al. 1999
Siedepunkt (°C) 362.66 (est) EPI Suite 4.10 (US	Siedepunkt (°C)	362.66 (est)	EPI Suite 4.10 (US
EPA 2011)			EPA 2011)
Dampfdruck (Pa) 0.00049 (est) EPI Suite 4.10 (US	Dampfdruck (Pa)	0.00049 (est)	EPI Suite 4.10 (US
EPA 2011)			EPA 2011)
Henry's-Konstante ($Pa \cdot m^3 \cdot mol^{-1}$) 5.39 x 10 ⁻⁴ (est) EPI Suite 4.10 (US	Henry's-Konstante (Pa·m ³ ·mol ⁻¹)	$5.39 \times 10^{-4} \text{ (est)}$	EPI Suite 4.10 (US
EPA 2011)			EPA 2011)
Wasserlöslichkeit (mg·L ⁺) 7.517 (est), 9 (keine Angabe ob EPI Suite 4.10 (US	Wasserlöslichkeit (mg·L ⁻)	7.517 (est), 9 (keine Angabe ob	EPI Suite 4.10 (US
gemessen oder geschatzt) EPA 2011), Hall Jr		gemessen oder geschatzt)	EPA 2011), Hall Jr
$\frac{1}{1000} = \frac{1}{1000} = 1$		$= W_{2}(1) \cdot 2.50(-4) = W_{2}(2) \cdot 2.50(-4)$	et al. 1999
$p\mathbf{A}_{a}$ $p\mathbf{K}a(1): 2.30 \text{ (est)}, p\mathbf{K}a(2): 2.38 \text{ (est)}, SPARC V4.5$ $p\mathbf{K}a(2): 2.76 \text{ (ast)} \text{ (findia 2 Nim}$ $(Karialthaff at a)$	$\mathbf{p}\mathbf{n}_{\mathrm{a}}$	pKa (1): 2.30 (est), pKa (2): 2.38 (est), pKa (2): 2.76 (ast) (fin dia 2.N dim	SFAKU V4.5
$\frac{\text{pKa}(5). 2.70 \text{ (est) (Iul ule 5 N III)}{\text{(KallCKII0II et al.}}$		Triaging	$(\mathbf{Kallekholl et al.})$
$\frac{111 \text{ ALIII III}}{111 \text{ ALIII III}} = \frac{2009}{1000}$	n Octanol/Wasser	4.07 (est) 3.05 (keine Angeba eb	EDI Suite / 10 (US
<i>H</i> -Octailol/ wassel 4.07 (est), 5.95 (keine Aligabe, 00 EFT Suite 4.10 (US Vartailungskooffiziant(log K) EPA 2011):	N-Octailoi/ wasser Vorteilungskooffizient(log K_{-})	4.07 (est), 5.95 (Keine Aligabe, 00	EPI Suite $4.10(0.5)$
$\frac{1}{28} (keine Angabe ob genessen oder Konstantinou und$	V or containing skot the line in (10g Λ_{0W})	2.8 (keine Angabe, ob gemessen oder	Konstantinou und
2.0 (Keine Angabe, ob geniessen ouer Konstantinou und geschätzt) Albanis 2004.		2.0 (Kenie Angabe, 00 geniessen 0del geschätzt)	Albanis 2004.
Lametal 2004,			I am et al 2004,
Schmiedel 1907			Schmiedel 1997

Eigenschaften	Wert	Referenz
Sediment/ Wasser Verteilungskoeffizient ($\log K_{oc}$ or $\log K_p$)	2.630 (est); 1.61x10 ⁻² (exp); 2.41-3.65; 3.38-3.47	EPI Suite 4.10 (US EPA 2011); Lam et al. 2006; Comber <i>et</i> <i>al.</i> 2002; Lambropoulou <i>et al.</i> 2004

Allgemeines

- <u>Anwendung:</u> Cybutryn wird als ein Algizid in Antifouling Farben für Boote und Schiffe eingesetzt (Hall Jr et al. 1999). Es wird aber auch in Gebäudefassaden als Algizid in kunstharzgebundenen Fassadenbeschichtungen verwendet (Burkhardt et al. 2009), sowie als Biozid in Kühlwasser (Kahle und Nöh 2009).
- <u>Wirkungsweise:</u> Cybutryn gehört zu den s-Triazinen. s-Triazine hemmen den Elektronentransport während der Photosynthese. Sie wirken durch kompetetive und reversible Bindung an dieselbe Domäne des D1 Proteins des Photosystems II wie der Elektronenakzeptor Plastochinon QB, den sie aus der Bindungstasche verdrängen (Bowyer et al. 1991; Tietjen et al. 1991).
- Analytik: Cybutryn kann mittels SP Extraktion und LC-MS mit einer Methodennachweisgrenze von 1 ng/l (Sapozhnikova et al. 2009) nachgewiesen werden. Das Umweltbundesamt konnte für wässrige Proben mit SPE und GC-MS eine Bestimmungsgrenze von 1-4 ng/l angeben (Umweltbundesamt 2007).
- Stabilität: Cybutryn ist eine recht stabile Substanz. Im EQS Entwurf der EU (Kommission der Europäischen Gemeinschaften 2010) wurden Daten zur Hydrolyse, Photolyse und zum biologischen Abbau zusammengestellt. Für alle Abbauwege war der DT50 grösser als 2 Wochen (kleinster DT50 für Photolyse). Die DT50 für Hydrolyse und biologischen Abbau sind >50 Tage. Daher kann davon ausgegangen werden, dass die Konzentration von Cybutryn unter den ökoltoxikologischen Testbedingungen stabil war. Einzig für Tests mit Primärproduzenten, die länger als eine Woche dauerten und unter statischer Exposition stattfanden, scheint wegen der vergleichsweise tiefen DT50 für Photolyse eine Überprüfung der Testkonzentrationen entscheidend zu sein. In Tabellen 2a und 2b wurden bei den in dieses Raster fallenden, als K1 oder K2 bewerteten Studien, entweder die Testkonzentrationen überprüft oder die Exposition war semi-statisch.

Ökotoxikologische Parameter

Tab.2a: Effektdatensammlung für die **akuten** ökotoxischen Effekte von Cybutryn auf **Primärproduzenten**. Literaturdaten die in grau dargestellt wurden können nach dem TGD for EQS (Commission of the European Communities 2011) nicht direkt zur EQS-Herleitung verwendet werden, sollen aber als zusätzliche Information genannt werden. Eine Bewertung der Validität wurde nach den Klimisch-Kriterien (Klimisch et al. 1997) durchgeführt. Die mit einem * gekennzeichneten Validitätseinstufungen (sowie die Einteilung in akut und chronisch) wurden aus dem EU Dossier (Kommission der Europäischen Gemeinschaften 2010) übernommen. Es handelt sich dabei um nicht öffentliche Studien, die von der Industrie zur Verfügung gestellt wurden. Eine Unterscheidung in nominale und tatsächliche Testkonzentration wurde in der Tabelle nicht vollzogen, aber für die EQS-relevanten Studien (siehe Tab. 3a + 4) wurden nur Studien verwendet bei denen eine signifikante Abweichung unwahrscheinlich ist (siehe auch Abschnitt über die Stabilität von Cybutryn).

Effektdatenrecherche												
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Vali- dität	Literaturquelle		
		Süsswasse	er Algen									
Algen	Asterionella formosa	Wachstum	96	h	EC50	~	253	µg/L	2	Berard et al. 2003		
Algen	Chara vulgaris	Wachstum (Biomasse)	14	d	EC50	=	0.012	µg/l	3	Lambert et al. 2006		
Algen	Chara vulgaris	Photosynthese	14	d	EC50	=	0.017	µg/l	3	Lambert et al. 2006		
Algen	Chlamydomonas intermedia	Wachstum	6	d	EC50	=	0.5	µg/l	2	Berard et al. 2003		
Algen	Chlorella vulgaris	Wachstum	96	h	EC50	=	1.5	µg/l	2	Berard et al. 2003		
Algen	Chlorella vulgaris	Wachstum	96	h	EC50	=	1.45	μg/l	2	Nyström et al. 2002		
Algen	Chlorococcum, sp.				EC50	=	0.42	µg/l	4	Hoberg 1998b zitiert in Hall et al. 2009		
Algen	Closterium ehrenbergii	Wachstum	120	h	EC50	=	2.5	µg/l	2	Okamura et al. 2000b		
Algen	Closterium ehrenbergii	Embryogenese	120	h	EC50	=	3.6	µg/l	2	Okamura et al. 2000b		
Algen	Navicula accomoda	Wachstum	96	h	EC50	=	0.5	µg/l	2	Berard et al. 2003		
Algen	Navicula accomoda	Wachstum	96	h	EC50	=	0.45	µg/l	2	Nyström et al. 2002		
Algen	Navicula pelliculosa	Wachstum	96	h	EC50	=	0.0957	µg/l	1*	Hughes und Alexander 1993a		
Algen	Nitzschia sp.	Wachstum	96	h	EC50	=	0.8	µg/l	2	Berard et al. 2003		
Algen	Nitzschia sp.	Wachstum	96	h	EC50	=	0.75	µg/l	2	Nyström et al. 2002		
Algen	Scenedesmus acutus	Wachstum	96	h	EC50	=	5.1	µg/l	2	Berard et al. 2003		
Algen	Scenedesmus subspicatus	keine Angabe			EC50	=	2.4	µg/l	4	Rufli 1988		
Algen	Scenedesmus vacuolatus	Reproduktion	24	h	EC50	=	5.57	µg/l	2	Arrhenius et al. 2006		
A1	Connector muse in a substant	Depreduktion	24	b	5050		12.903		_	Neuwoehner et al.		
Algen	Scenedesmus vacuolatus	Reproduktion	24	n	ECOU	=	6.072	μg/i	2	2008		
Algen	Scenedesmus vacuolatus	Photosynthese	24	h	EC50	=	0.072	µg/l	2	2008		
Algen	Pseudokirchneriella subcapitata	keine Angabe			EC50	=	1.26	μg/l	4	Hughes und Alexander 1993d zitiert in Hall et al. 2009		
Algen	Pseudokirchneriella subcapitata	Wachstum	72	h	E _b C50	=	1.6	µg/l	2	Okamura et al. 2000a		

	Pseudokirchneriella						2.3			Okamura et al.
Algen	subcapitata	Wachstum	72	h	ErC50	=		µg/l	2	2000a
	Pseudokirchneriella						108			
Algen	subcapitata	Wachstum	72	h	EC50	=	40.0	µg/I	2	Hernando et al. 2005
Algen	subcapitata	Wachstum	72	h	EC50	-	10.8	ug/l	2	al 2002
Algen	Pseudokirchneriella	Wachstum	12		2030	-	3.3	μg/i	2	ai. 2002
Algen	subcapitata	Wachstum	96	h	EC50	=	0.0	µg/l	2	Berard et al. 2003
	Pseudokirchneriella						4.2		1	Jongbloed und
Algen	subcapitata	Wachstum	72	h	EC50	=		µg/l	4	Luttik 1996
Algen	Staurastrum sebaldii	Wachstum	6	d	EC50	=	2.5	µg/l	2	Berard et al. 2003
		Süsswasser Cy	anobakterien						-	
										Hughes und
										Alexander 1993c
Cvanobacterien	Anabaana flos-aquaa	keine Angebe			EC50	_	2.07	ua/l	4	Zitlert in Hall et al.
Gyanobacterien	Anabaena nos-aquae	marine Angabe	Algen		2030	-	2.01	µg/L	-	2003
Algen	Ceramium tenuicorne	Wachstum	7	Ь	EC50	-	0.96		2	Karlsson et al. 2006
Algen	Gerainiani tenalcome	Wachstum	'	u	2030	-	1.30	µg/∟	2	Koutsaftis und
Algen	Chaetocerus gracilis	Wachstum	72	h	EC50	=		ua/l	2	Aovama 2006
							0.56	- 3 -		Hoberg 1998d zitiert
Algen	Dunaliella tertiolecta	keine Angabe			EC50	=		µg/l	4	in Hall et al. 2009
							5.9			Okamura et al.
Algen	Eisenia bicyclis	Wachstum	96	h	EC50	=		µg/l	2	2000b
A 1man	Fiscaria bisvalia	Zellteilung	-		5050		2.2		2	Okamura et al.
Algen	Elsenia bicyclis	Zeittellung	1	a	ECOU	=	2	µg/i	2	2000b
Algen	Fisenia bicyclis	Wachstum	7	Ь	EC50	-	2	ug/l	2	2000b
Algen	Electing bioyens			ŭ	2000	-	2.1	μ9/1	-	Okamura et al.
Algen	Eisenia bicyclis	Wachstum	7	d	EC50	=		µg/l	2	2000b
Algen	Emiliana huxleyi	Wachstum	72	h	EC50	=	0.25	µg/l	2	Devilla et al. 2005
Algen	Emiliana huxleyi	Wachstum	72	h	EC50	=	0.406	µg/l	2	Buma et al. 2009
							5.4			
Algen	Enteromorpha intestinalis	Wachstum	6	d	EC50	=		µg/l	2	Scarlett et al. 1997
Algen	Enteromorpha intestinalis	Photosynthese	72	h	EC50	=	2.5	µg/l	2	Scarlett et al. 1997
Algen	Fucus vesiculosus	Befruchtung	72	h	EC50	=	0.325	µg/l	2*	Andersson 1995
Algen	Fibrocapsa japonica	Wachstum	72	h	EC50	=	0.618	µg/l	2	Buma et al. 2009
Algen	Hormosira banksii	Photosynthese	2	h	EC50	=	0.17	µg/l	2	Seery et al. 2006
Almon	lessburgis velberes	haina Amaraha			5050		0.44		4	Hoberg 1998c zitiert
Algen	Isochrysis gaibana	keine Angabe			ECOU	=	0.6	µg/i	4	In Hall et al. 2009
Algen	Porphyra vezoensis	Wachstum	96	h	EC50	-	0.0	ua/l	2	2000b
, agon							5000	P-9/-		Okamura et al.
Algen	Porphyra yezoensis	Mortalität	96	h	EC50	=		µg/l	2	2000b
							4.1			Okamura et al.
Algen	Porphyra yezoensis	Keimung	96	h	EC50	=		µg/l	2	2000b
										Hughes und
										Alexander 1993b
Algen	Skeletonema costatum	Wachstum	5	Ь	EC50	-	0.452	ua/l	1*	2009
Algen	Skeletonema costatum	Wachstum	96	h	EC50		0.17	ua/l	2	Zhang et al. 2008
Algen	Tetraselmis sp.	Wachstum	72	h	EC50	=	0.116	ua/l	2	Buma et al. 2009
Algen	Thalassiosira pseudonana	Wachstum	96	h	EC50	=	0.27	ua/l	2	Zhang et al. 2008
Algen	Thalassiosira weissflogii	Wachstum	72	h	EC50	=	0.303	µa/l	2	Buma et al. 2009
.		marine Cyan	obakterien							
Cyanobacterien	Chroococcus minor	Wachstum	96	h	EC50	=	7.71	µg/l	2	Zhang et al. 2008
Cyanobacterien	Synechococcus sp.	Wachstum	72	h	EC50	=	0.160	µg/l	2	Devilla et al. 2005
		marine / Brackv	vasser-Algen							

Algen	Dunaliella tertiolecta	Wachstum	72	h	FC50	_	1.100	ua/l	2	Gatidou und Thomaidis 2007
	2 ununona toratorea					_		P-9/-	-	DeLorenzo und
Algen	Dunaliella tertiolecta	Wachstum	96	h	EC50	=	0.730	µg/l	2	Serrano 2006
										Gatidou und
Algen	Navicula forcipata	Wachstum	72	h	EC50	=	1.100	µg/l	2	Thomaidis 2007
		Süsswasser Ma	akrophyten							
Makrophyten	Potamogeton pectinatus	Trockengewicht	28	d	EC50	=	6.115	µg/l	1*	Hall et al. 1999*
Makrophyten	Apium nodiflorum	Wurzelwachstum	14	d	EC50	=	0.013	µg/l	3	Lambert et al. 2006
Makrophyten	Apium nodiflorum	Wachstum (Biomasse)	14	d	EC50	=	1.18	µg/l	3	Lambert et al. 2006
Makrophyten	Lemna gibba	Wachstum	7	d	EC50	=	11	µg/l	2	Okamura et al. 2003
							11			Okamura et al.
Makrophyten	Lemna gibba	Wachstum	7	d	EC50	=		µg/l	2	2000b
							1.65			Hughes und
Makrophyten	Lemna gibba	Wachstum	14	d	EC50	=		µg/L	1*	Alexander 1993e
Makrophitop	Lampa minor	Washatum	7	d	5050	_	8.1			Okamura et al.
Makrophyten	Muriophyllum opiootum	Wachstum (Piemeese)	4.4	d	EC30	=	2	µg/i	2	Lombort et al. 2006
Makrophyten	mynopnynum spicatum	Wacristuin (Biomasse)	14	u	EC30		2	μg/i	3	Lampert et al. 2000
Malmanhatan	Dunnia monitimo		ophyten		5050		0.040		4+	
Makropnyten	Ruppia mantima	wachstum	28	a	EC50	=	0.843	µg/L	1^	Hall et al. 1999
Makrophyten	Zostera marina	Photosynthese	10	d	EC50	-	1.10	ua/l	2	2004
Makrophyten	Zostera marina	Photosynthese	10	d	EC50	=	2.50	ua/l	2	Scarlett et al. 1999
Makrophyten	Makrophyten Blätter	Photosynthese	24	h	NOEC	=	2.53	ua/l	2	Nyström et al. 2002
Makrophyten	Makrophyten Blätter	Photosynthese	24	h	NOEC	=	8.01	ua/l	2	Nyström et al. 2002
Makrophyten	Makrophyten Blätter	Photosynthese	24	h	NOEC	=	8	ua/l	2	Nyström et al. 2002
Makrophyten	Makrophyten Blätter	Photosynthese	24	h	NOEC	=	8	µg/I	2	Nyström et al. 2002
		marine Algengen	neinschaften			<u>.</u>		15	•	
Algen	marines Periphyton	Photosynthese	45	min	EC50	=	1.04	ua/l	2	Arrhenius et al. 2006
							1.292	13		Dahl und Blanck
Algen	marines Periphyton	Photosynthese	45	min	EC50	=		µg/l	2	1996
mariner pelagischer Mikrokosmos	Phytoplankton Gemeinschaft	Artenzusammensetzung (Pigment Analyse)	3	d	EC50	=	0.07	µg/I	2	Readman et al. 2004

Tab.2b: Effektdatensammlung für die **chronischen** ökotoxischen Effekte von Cybutryn auf **Primärproduzenten**. Literaturdaten die in grau dargestellt wurden können nach dem TGD for EQS (Commission of the European Communities 2011) nicht direkt zur EQS-Herleitung verwendet werden, sollen aber als zusätzliche Information genannt werden. Eine Bewertung der Validität wurde nach den Klimisch-Kriterien (Klimisch et al. 1997) durchgeführt. Die mit einem * gekennzeichneten Validitätseinstufungen wurden aus dem EU Dossier (Kommission der Europäischen Gemeinschaften 2010) übernommen. Es handelt sich dabei um nicht öffentliche Studien, die von der Industrie zur Verfügung gestellt wurden. Eine Unterscheidung in nominale und tatsächliche Testkonzentration wurde in der Tabelle nicht vollzogen, aber für die EQS-relevanten Studien (siehe Tab. 3 + 4) wurden nur Studien verwendet bei denen eine signifikante Abweichung unwahrscheinlich ist siehe auch Abschnitt über die Stabilität von Cybutryn).

Effekdatenrecherche												
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Vali-	Literaturquelle		
									uitat			
		Susswasse	er Algen	1 .		1				Lawland of al. 0000		
Algen	Chara vulgaris	Photosynthese	14	d	NOEC	=	0.0005	µg/L	3	Lambert et al. 2006		
Algen	Chara vulgaris	Wachstum (Biomasse)	14	d	NOEC	=	0.002	µg/l	3	Lambert et al. 2006		
Algen	Navicula pelliculosa	Wachstum	120	h	NOEC	=	0.017	µg/l	1*	Hughes und Alexander 1993a ; Jongbloed und Luttik 1996		
Algen	Nitszchia sp.	Wachstum (Biomasse)	96	h	NOEC	=	0.1	µg/l	2	Nyström et al. 2002		
Algen	Desmodesmus subspicatus	Wachstum	72	h	NOEC	=	0.23	µg/l	4	Jongbloed und Luttik 1996		
Algon	Desmodesmus	Wachstum (Biomasso)	120	h	NOEC	_	0.22	110/1	4	Rufii 1988		
Algen	Sconodosmus vacuolatus	Reproduktion	24	h	NOEC	-	0.507	µg/i	2	Arrhenius et al 2006		
Aigen	Pseudokirchneriella	Keproduktion	24		NOLO	-	0.507	μg/i	2	Jongbloed und		
Algen	subcapitata	Wachstum	120	h	NOEC	=	0.65	µg/l	4	Luttik 1996		
marine Algen												
										Hoberg 1998b zitiert		
Algen	Chlorococcum sp.	Wachstum (Zelldichte)	120	h	NOEC	=	0.11	µg/L	4	in Hall et al. 2009		
Algen	Eisenia bicyclis	Wachstum (Gametophyt)	96	h	NOEC	=	3.2	µg/i	2	Okamura et al. 2000b		
Algen	Eisenia bicyclis	Zellteilung	7	d	NOEC	=	0.32	µg/i	2	Okamura et al. 2000b		
Algen	Eisenia bicyclis	Wachstum (weibliche Alge)	7	d	NOEC	=	1	µg/l	2	Okamura et al. 2000b		
Algen	Eisenia bicyclis	Wachstum (männliche Alge)	7	d	NOEC	=	0.32	µg/i	2	Okamura et al. 2000b		
Algen	Enteromorpha intestinalis	Blattwachstum	6	d	NOEC	=	0.05	µg/l	2	Scarlett et al. 1997		
Algen	Fucus serratus	Zygotenkeimung (Feret Durchmesser)	72	h	NOEC	=	31	µg/l	2	Braithwaite und Fletcher 2005		
Algen	Fucus serratus	Zygotenkeimung (Fläche)	72	h	NOEC	=	8	µg/l	2	Braithwaite und Fletcher 2005		
Algen	Isochrysis galbana	Wachstum	120	h	NOEC	=	0.11	µg/I	4	Hoberg 1998c zitiert in Hall et al. 2009		
Algen	Porphyra yezoensis	Mortalität	96	h	NOEC	=	1500	µg/l	2	Okamura et al. 2000b		
Algen	Porphyra yezoensis	Keimung	96	h	NOEC	=	1.2	µg/l	2	Okamura et al. 2000b		

A	Skeletonema costatum	Wachstum	120	h	NOEC	=		µg/I	1*	Hughes und Alexander 1993b; Jongbloed und			
Algen	Chalatanama aaatatum	Weekstum (Meekstumenste)	00	6	NOTO		0.146		_	Luttik 1996			
Algen	Thelessiesire posudopopo	Wachstum (Wachstumsrate)	90	n h	NOEC	-	0.022	µg/i	2	Zhang et al. 2008			
Algen	Thalassiosita pseudonaria	wachstum (wachstumstate)	90	n	NOEC	=	0.047	µg/i	2	Zhang et al. 2008			
Interine / brackWasser-Algen													
Algen	Dunaliella tertiolecta	wachstum (Zelizani)	96	n	NUEC	=	0.090	µg/∟	2	Serrano 2006			
Algen	Dunaliella tertiolecta	Wachstum (Zellzahl)	120	h	NOEC	Ш	0.130	µg/l	4	Hoberg 1998d zitiert in Hall et al. 2009			
	Süsswasser Cyanobakterien												
Cyanobakterien	Anabaena flos-aquae	Wachstum	120	h	EC10	=	0.540	µg/l	4	Jongbloed und Luttik 1996			
		marine Cyano	bakterien										
Cyanobakterien	Chroococcus minor	Wachstum (Wachstumsrate)	96	h	NOEC	=	1.000	µg/l	3	Zhang et al. 2008			
		Süsswasser Ma	krophyten										
Makrophyten	Apium nodiflorum	Photosynthese	14	d	NOEC	Ш	2	µg/l	3	Lambert et al. 2006			
Makrophyten	Apium nodiflorum	Wachstum (Biomasse)	14	d	NOEC	Ш	0.2	µg/l	3	Lambert et al. 2006			
Makrophyten	Lemna gibba	Wachstum	14	d	NOEC	Ш	0.4	µg/l	4	Jongbloed und Luttik 1996			
Makrophyten	Lemna gibba	Wachstum	14	d	NOEC	=	0.671	µg/l	1*	Hughes und Alexander 1993e			
Makrophyten	Myriophyllum spicatum	Photosynthese	14	d	NOEC	=	2	µg/l	3	Lambert et al. 2006			
Makrophyten	Myriophyllum spicatum	Wachstum (Biomasse)	14	d	NOEC	=	2	µg/l	3	Lambert et al. 2006			
marine Makrophyten													
Makrophyten	Zostera marina	Photosynthese	10	d	NOEC	=	0.500	µg/L	2	Scarlett et al. 1999			
Makrophyten	Zostera marina	Blattwachstum	10	d	NOEC	=	0.500	µg/l	2	Scarlett et al. 1999			
Makrophyten	Zostera marina	Photosynthese	36	d	EC50	=	0.200	µg/l	2	Scarlett et al. 1999			

Tab.2c: Effektdatensammlung für die **akuten und chronischen** ökotoxischen Effekte von Cybutryn auf **alle** einzelnen **Arten ausser Primärproduzenten**. Literaturdaten die in grau dargestellt wurden können nach dem TGD for EQS (Commission of the European Communities 2011) nicht direkt zur EQS-Herleitung verwendet werden, sollen aber als zusätzliche Information genannt werden. Eine Bewertung der Validität wurde nach den Klimisch-Kriterien (Klimisch et al. 1997) durchgeführt. Die mit einem * gekennzeichneten Validitätseinstufungen wurden aus dem EU Dossier (Kommission der Europäischen Gemeinschaften 2010) übernommen. Es handelt sich dabei um nicht öffentliche Studien, die von der Industrie zur Verfügung gestellt wurden. Eine Unterscheidung in nominale und tatsächliche Testkonzentration wurde in der Tabelle nicht vollzogen, aber für die EQS-relevanten Studien (siehe Tab. 3 + 4) wurden nur Studien verwendet bei denen eine signifikante Abweichung unwahrscheinlich ist siehe auch Abschnitt über die Stabilität von Cybutryn).

Effektdatenrechereche													
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Vali-	Literaturquelle			
									dität				
akute Effektdaten Süsswasser													
Krobstiere	Daphaia magna	Mortalität	49	h	1.050	_	9200		2	Okamura et al.			
Krobstiere	Daphnia magna	Immobilisiorung	40	h	EC50		7200	µg/i	2	Horpando et al 2005			
Krebstiere	Daphnia magna	Immobilisierung	48	h	LOEC	_	10000	<u>µg/i</u>	2	Hernando et al. 2005			
Riobolioro	Daprina magna	inniosiisierung	40		1010	_	10000	μgri	~	Fernandez-Alba et			
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	=	7300	µg/l	2	al. 2002			
										Okamura et al.			
Krebstiere	Daphnia magna	Mortalität	24	h	LC50	=	16000	µg/l	3	2000b			
							10000			Jongbloed und			
Krebstiere	Daphnia magna	Hemmung	24	h	EC50	=	49000	µg/I	3	Luttik 1996			
Krebstiere	Daphnia magna	Mortalität	48	h	LC50	=	2400	µg/l	1*	1990			
										Okamura et al.			
Krebstiere	Daphnia pulex	Mortalität	24	h	LC50	=	5700	µg/l	3	2000a			
										Okamura et al.			
Krebstiere	I namnocephaius platyurus	Mortalitat	24	n	LC50	=	12000	µg/i	2	2000a			
Muschelh	Unio elongatulus	Glochidientoxizitat	48	n	EC50	>	10000	µg/i	2	Farla et al. 2010			
Fische	Danio rerio	Mortalität	96	h	LC50	=	4000	µg/l	4	Luttik 1996			
Fische	Danio rerio	Mortalität	96	h	LC50	=	4000	µg/l	4	Paulus 2004			
										Jongbloed und			
Fische	Lepomis macrochirus	Mortalität	96	h	LC50	=	2900	µg/l	4	Luttik 1996			
Fische	Lepomis macrochirus	Mortalität	96	h	LC50	=	2900	µg/l	4	Paulus 2004			
	t and a second states	NR	10	1.	1.050					Jongbloed und			
/ Fische	Opeorthypobulo mykico	Mortalität	48	n	LC50	=	0200	µg/i	3	Okemure et al. 2002			
Fische	Oncornynchus mykiss	Mortalität	06	u	LC50	=	23000	µg/i	Z	Dealling 2004			
FISCHE	Oncornynchus mykiss	Wortalitat	90		LC30	=	940	μул	4	Faulus 2004			
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	=	940	µg/l	4	Luttik 1996			
										Jongbloed und			
Fischo	Oncorhynchus mykiss	Mortalität	96	h	1.050	_	960	110/1	2*	Luttik 1996; Rufli			
1 130110	Cheomynenus mykiss	akute Effektdaten	Brackwasser		2030		000	P9/		1305			
Krebstiere	Nitocra spinipes	Mortalität	96	h	1.050	-	4500	ug/l	2	Karlsson et al. 2006			
Schnecken	livanassa obsoleta	Mortalität adulte Tieren	96	h	1.050	-	3730		2	Finnegan et al. 2000			
Connocken	nyunassa obsoleta		30		2000	-	5150	P9/1	-	i innegan et al. 2009			

Schnecken	llyanassa obsoleta	Mortalität Larven	96	h	LC50	=	3160	µg/l	2	Finnegan et al. 2009
Schnecken	llyanassa obsoleta	Toxizität gegenüber adulten Tieren	96	h	NOEC	=	3680	µg/l	2	Finnegan et al. 2009
Schnecken	llyanassa obsoleta	Toxizität gegenüber Larven	96	h	NOEC	=	1460	µg/l	2	Finnegan et al. 2009
Fische	Fundulus heteroclitus	Mortalität	96	h	LC50	=	3220	µg/l	2	Key et al. 2009
Fische	Fundulus heteroclitus	Mortalität	96	h	NOEC	=	1250	µg/l	2	Key et al. 2009
Fische	Fundulus heteroclitus	Mortalität	96	h	LOEC	=	2500	µg/l	2	Key et al. 2009
		marine akute E	ffektdaten	-				-		
Ascidien	Ciona intestinalis	Embryogenese	24	h	EC50	=	2110	µg/l	2	Bellas 2006
Ascidien	Ciona intestinalis	Festsetzen der Larven	48	h	EC10	=	924	µg/l	2	Bellas 2006
Bakterien	Vibrio fischeri	Lumineszenz	15	min	EC50	=	50800	µg/l	2	Hernando et al. 2005
Bakterien	Vibrio fischeri	Lumineszenz	15	min	LOEC	=	10000	µg/l	2	Hernando et al. 2005
Bakterien	Vibrio fischeri	Lumineszenz	30	min	EC50	=	15500	µg/l	2	Hernando et al. 2003
									_	Fernandez-Alba et
Bakterien	Vibrio fischeri	Lumineszenz	30	min	EC50	=	50800	µg/l	2	al. 2002
Echinodermaten	Paracentrotus lividus	Embryogenese	48	h	EC50	=	4020	µg/l	2	Bellas 2006
Echinodermaten	Paracentrotus lividus	Wachstum	48	h	EC50	=	6030	µg/l	2	Bellas 2006
Krebstiere	keine Angabe	keine Angabe	96	h	EC50	=	400	µg/l	4	Paulus 2004
Krebstiere	Artemia salina	Mortalität	24	h	LC50	=	1620	µg/l	4	Bakoulia et al. 2002
Krebstiere	Balanus albicostatus	Mortalität	48	h	LC50	=	556	ua/i	2	Khandeparker et al. 2005
Krebstiere	Mysidopsis bahia	Mortalität	96	h	LC50	=	400	ua/l	1*	Hoberg 1986
Krebstiere	Palaemonetes pugio	Mortalität adulter Tiere	96	h	LC50	=	2460	µg/l	2	Key et al. 2008
Krebstiere	Palaemonetes pugio	Mortalität adulter Tiere	96	h	NOEC	=	500	µg/l	2	Key et al. 2008
Krebstiere	Palaemonetes pugio	Mortalität adulter Tiere	96	h	LOEC	=	1000	µg/l	2	Kev et al. 2008
Krebstiere	Palaemonetes pugio	Larvenmortalität	96	h	LC50	=	1520	ua/l	2	Kev et al. 2008
Krebstiere	Palaemonetes pugio	Larvenmortalität	96	h	NOEC	=	2000	µq/l	2	Kev et al. 2008
Krebstiere	Palaemonetes pugio	Larvenmortalität	96	h	LOEC	=	1000	µa/l	2	Kev et al. 2008
		Embryogenese (Anteil normal entwickelter D-								
Muscheln	Mytilus edulis	Veliger Larven)	48	h	EC50	=	1540	µg/l	2	Bellas 2006
Nesseltiere	Acropora formosa	Photosynthese symbiotischer Dinoflagellaten	10	h	EC50	=	0.9	ua/l	2	Jones und Kerswell 2003
								10		Jones und Kerswell
Nesseltiere	Seriatophora hystrix	Photosynthese symbiotischer Dinoflagellaten	10	h	EC50	=	0.7	µg/l	2	2003
Muscheln	Auster	keine Angabe	48	h	EC50	=	3200	µg/l	4	Paulus 2004
Fische	Cyprinodon variegatus	Mortalität	96	h	LC50	=	3400	ua/l	4	Jongbloed und
	.,,							r ar		Jongbloed und
			1						1	Luttik 1996 Chandler
Fische	Menidia beryllina	Mortalität	96	h	LC50	=	1760	µg/l	1*	1989
		subchronische und chronis	che Daten Sü	sswasser		-		ŧ		i
Muscheln	Dreissena polymorpha	Embryotoxizität	48	h	EC50	>	10000	µg/l	2	Faria et al. 2010
Et a la a	One of the second se	March et an			1.050				4	Jongbloed und
Fische	Oncornynchus mykiss	wacnstum	98	a	LUEG	<	29	µg/i	4	LuttlK 1996
Fische	Oncornynchus mykiss	subchronisch			NOEC	=	6.1	µg/l	4	Munoz et al. 2010
Fische	Oncornyncnus mykiss		14	d	LC50	=	/400	µg/I	2	Okamura et al. 2002
Fische	Oncornynchus mykiss	Mortalität	21	d	LC50	=	2500	µg/l	2	Okamura et al. 2002
Fische	Oncornynchus mykiss	Mortalitat	28	d	LC50	=	880	μg/i	2	Okamura et al. 2002
Fische	Oncorhynchus mykiss	Schlüpffähigkeit			NOEC	=	184	µg/l	4	1994
Fische	Oncorhynchus mvkiss	Überleben, 60 Tage nach dem Schlüpfen	60	d	NOEC	=	184	µa/l	4	Cohle und Veltri 1994
Fische	Oncorhynchus mykiss	Wachstum, 60 Tage nach dem Schlüpfen	60	d	NOEC	=	4.0	µg/l	1*	Cohle und Veltri 1994
		subchronische und chronisc	che Daten Bra	ckwasser						_

		Tieren			1					
Schnecken	Ilyanassa obsoleta	Toxizität gegenüber adulten Tieren	45	d	EC50	=	1880	µg/l	2	Faria et al. 2010
marine subchronische und chronische Daten										
Echinodermaten	Paracentrotus lividus	Spermientoxizität	48	h	NOEL	<	10	µg/l	2	Manzo et al. 2006
										Boeri und Ward
Krebstiere	Mysidopsis bahia	Wachstum	28	d	NOEC	=	110	µg/l	1*	1991
										Boeri und Ward
Krebstiere	Mysidopsis bahia	Überleben	28	d	NOEC	=	260	µg/l	4	1991
										Boeri und Ward
Krebstiere	Mysidopsis bahia	Reproduktion	28	d	NOEC	=	260	µg/l	4	1991
										Jongbloed und
Krebstiere	Mysidopsis bahia	Wachstum	28	d	NOEC	=	110	µg/l	4	Luttik 1996
Fische	Cyprinodon variegatus	Wachstum	33	d	NOEC	=	170	µg/l	1*	Sousa 2001

Tab.2d: Effektdatensammlung für die **chronischen** ökotoxischen Effekte von Cybutryn in **Mikro- und Mesokosmen**. Literaturdaten die in grau dargestellt wurden können nach dem TGD for EQS (Commission of the European Communities 2011) nicht direkt zur EQS-Herleitung verwendet werden, sollen aber als zusätzliche Information genannt werden. Eine Bewertung der Validität wurde nach den Klimisch-Kriterien (Klimisch et al. 1997) durchgeführt. Die mit einem * gekennzeichneten Validitätseinstufungen wurden aus dem EU Dossier (Kommission der Europäischen Gemeinschaften 2010) übernommen. Es handelt sich dabei um nicht öffentliche Studien, die von der Industrie zur Verfügung gestellt wurden. Eine Unterscheidung in nominale und tatsächliche Testkonzentration wurde in der Tabelle nicht vollzogen, aber für die EQS-relevanten Studien (siehe Tab. 3 + 4) wurden nur Studien verwendet bei denen eine signifikante Abweichung unwahrscheinlich ist siehe auch Abschnitt über die Stabilität von Cybutryn).

Effektdatenrecherche											
Sammelbezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Vali- dität	Literaturquelle	
	-	Süsswasser Mikro-	/ Mesokosme	n		•				,	
Süsswasser Teiche	Cladocera	Biomasse	148	d	EC10	=	0.039	µg/l	2	Mohr et al. 2008	
Süsswasser Teiche	Cladocera	Biomasse	148	d	EC50	=	1.21	µg/l	2	Mohr et al. 2008	
Süsswasser Teiche	cyclopoide Copepoditen	Biomasse (TWA)	78	d	EC10	=	0.002	µg/l	2	Mohr et al. 2008	
Süsswasser Teiche	cyclopoide Copepoditen	Biomasse	78	d	EC50	=	0.09	µg/l	2	Mohr et al. 2008	
Süsswasser Teiche	Megacyclops viridis	Biomasse	92	d	EC10	=	0.07	µg/l	2	Mohr et al. 2008	
Süsswasser Teiche	Megacyclops viridis	Biomasse	92	d	EC50	=	0.33	µg/l	2	Mohr et al. 2008	
Süsswasser Teiche	Ostracoda	Biomasse	148	d	EC50	=	0.11	µg/l	2	Mohr et al. 2008	
Süsswasser Teiche	Ostracoda	Biomasse	148	d	EC50	=	0.035	µg/l	2	Mohr et al. 2008	
Süsswasser Teiche	fädige Algen	Biomasse (Frischgewicht)	150	d	EC50	=	2.13	µg/l	2	Mohr et al. 2009	
Süsswasser Teiche	fädige Algen	Biomasse (Frischgewicht)	150	d	EC10	=	0.34	µg/l	2	Mohr et al. 2009	
Süsswasser Teiche	Potamogeton nodosus	Biomasse (Frischgewicht)	150	d	EC50	=	0.92	µg/l	2	Mohr et al. 2009	
Süsswasser Teiche	Potamogeton nodosus	Biomasse (Frischgewicht)	150	d	EC10	=	0.76	µg/l	2	Mohr et al. 2009	
Süsswasser Teiche	gesamte Makrophyten	Biomasse (Frischgewicht)	150	d	EC50	=	1.38	µg/l	2	Mohr et al. 2009	
Süsswasser Teiche	gesamte Makrophyten	Biomasse (Frischgewicht)	150	d	EC10	=	0.12	µg/l	2	Mohr et al. 2009	
Algen	Grünalgen	Wachstum (TWA)	135	d	EC10	=	0.001	µg/l	2	Umweltbundesamt 2007 und Mohr et al. 2008	
Algen	Grünalgen	Wachstum	135	d	EC50	=	0.34	µg/l	2	Umweltbundesamt 2007 und Mohr et al. 2008	
Algen	Epithemia adnata	Wachstum	58	d	EC10	=	0.04	µg/l	2	Umweltbundesamt 2007 und Mohr et al. 2008	
Algen	Epithemia adnata	Wachstum	58	d	EC50	=	0.09	μg/l	2	Umweltbundesamt 2007 und Mohr et al. 2008	
Algen	Periphyton Gemeinschaft	Wachstum	9	d	EC10	=	0.06	µg/l	2	Umweltbundesamt 2007 und Mohr et al. 2008	
Algen	Periphyton Gemeinschaft	Wachstum	9	d	EC50	=	0.31	µg/l	2	Umweltbundesamt 2007 und Mohr et al. 2008	
Makrophyten	Myriophyllum verticillatum	Wachstum (TWA)	150	d	EC10	=	0.01	µg/l	2	Umweltbundesamt 2007 und Mohr et al. 2008	

										Ilmwelthundesamt
										2007 und Mohr et al.
Makrophyten	Myriophyllum verticillatum	Wachstum	150	d	EC50	=	0.21	µg/l	2	2008
Süsswasser in situ (Genfer	Phytoplankton aus dem									
See) Plankton Kompartimente	Genfer See	Gemeinschaftsstruktur (Bray-Curtis-Index)	24	d	NOEC	=	0.004	µg/l	2	Nyström et al. 2002
		Brackwasser Mikro-	/ Mesokosme	n						
simuliertes, estuarines		Wachstum (Trockengewicht und								DeLorenzo et al.
Salzwiesen Ökosystem	Mercenaria mercenaria	Schalengrösse der Muschel)	35	d	NOEC	=	0.1	µg/l	2	2009
		marine Mikro-/ M	esokosmen							
mariner Periphyton										Dahl und Blanck
Mikrokosmos	marines Periphyton	Photosynthese	21	d	NOEC	=	0.016	µg/l	2	1996
mariner Periphyton										Dahl und Blanck
Mikrokosmos	marines Periphyton	Photosynthese	21	d	NOEC	=	0.063	µg/l	2	1996
mariner Periphyton										Dahl und Blanck
Mikrokosmos	marines Periphyton	Bray-Curtis Index	21	d	NOEC	=	0.063	µg/l	2	1996
mariner Periphyton										Dahl und Blanck
Mikrokosmos	marines Periphyton	Biomasse ChI a	21	d	NOEC	=	0.253	µg/l	2	1996
mariner Periphyton									_	Dahl und Blanck
Mikrokosmos	marines Periphyton	Number of algal taxa	21	d	NOEC	=	0.253	µg/l	2	1996
simulierter mariner Tiden	-									
Mikrokosmos in Bottichen	Seegras	Biomasse (Nassgewicht) (TWA)	70	d	NOEC	=	0.323	µg/l	1*	Hoberg 2004
simulierter mariner Tiden									_	
Mikrokosmos in Bottichen	Makroinvertebraten	Biomasse (Nassgewicht)	70	d	NOEC	=	0.8	µg/l	2	Hoberg 2004
simulierter mariner Tiden	- · · · ·								_	
Mikrokosmos in Bottichen	Schlickgräser	Biomasse (Nassgewicht)	70	d	NOEC	=	0.8	µg/l	2	Hoberg 2004
simulierter mariner Tiden										
Mikrokosmos in Bottichen	Periphyton	Photosynthese	70	d	NOEC	=	0.8	µg/I	2	Hoberg 2004
simulierter mariner Tiden	Barlahadan	terrent alle Alexandren	70		NOTO					11 - h - m - 000 4
Mikrokosmos in Bottichen	Periphyton	taxonomische Abundanz	70	a	NOEC	=	0.8	µg/i	2	Hoberg 2004
simulierter mariner Tiden	Dhutenlenkten		70		NOTO		0.000		4+	Haberry 2004
Mikrokosmos in Bottichen	Phytopiankton	Photosynthese (TWA)	70	a	NUEC	=	0.323	µg/i	1.	Hoberg 2004
Simulerter mariner Tiden	Dhutenlankten	(avenemiashe Abundana (TMA)	70		NOTO		0.000		4+	Ushawa 2004
Wikrokosmos in Bottichen	Phytopiankton	taxonomische Abundanz (TWA)	70	a	NUEC	=	0.323	µg/i	11	Hoberg 2004
Simulierter mariner Tiden	Zaanlankton	Riemanne (Nessgewicht)	70		NOEC	_			_	Hohora 2004
wikrokosmos in Bottichen	Zoopiankton	Biomasse (Nassgewicht)	70	a	NUEC	=	0.8	µg/i	2	Hoberg 2004

Graphische Darstellung der Toxizitätsdaten

Abb.1: Kurzzeit (KZ) und Langzeit(LZ)-Effektdaten von Cybutryn für aquatische Organismen. Bei den Bakterien wurden nur Cyanobakterien berücksichtigt.

Verwendung von marinen und liminischen Daten

Im EQS Dossier Entwurf der EU (Kommision der Europäischen Gemeinschaften (2010) wurde gezeigt, dass marine und limnische Daten für die Ableitung der EQS vereinigt werden können.

Herleitung des AA-EQS mit verschiedenen Methoden

Tab.3a: Übersicht zu den kritischen Toxizitätswerten von Cybutryn auf Wasserorganismen aus längerfristigen Untersuchungen.

Gruppe	Spezies	Wert	Konz. in	Literatur
			µg/l	
Algen/Wasser-	Navicula pelliculosa	EC10	0.017	Hughes und
pflanzen				Alexander
				1993a
Krebstiere	Mysidopsis bahia	NOEC	110	Boeri und Ward
				1991
Fische	Oncorhynchus mykiss	NOEC	4.0	Cohle und Veltri
				1994
Sonstige	llyanassa obsoleta	NOEC	1500	Finnegan et al.
				2009

AA-EQS Assessment Faktor Methode

Es liegen NOEC-Werte für die Organismengruppen der Algen Kleinkrebse, Fische und Schnecken vor. Der empfindlichste belastbare Endpunkt liegt bei dem von Hughes und Alexander (1993a) für die Kieselalge *Navicula pelliculosa* erhobeneN NOEC von 0.017 µg/l. Nach der AF-Methode ergibt sich daraus ein Langzeit-Qualitätskriterium von:

AA-EQS(AF) = 0.017 µg/l / 10 = 0.0017 µg/l = 1.7 ng/l

AA-EQS SSD Methode

Es sind nicht genügend Daten vorhanden, um die Anforderungen des TGD for EQS (Commission of the European Communities 2011) zu erfüllen. Es gibt nur NOECs/EC10 für 5 taxonomische Gruppen und der Datensatz wird von Primärproduzenten dominiert (15/22 validen und EQS relevanten NOECs). Es kann daher nicht mittels einer SSD der NOEC/EC10-Werte gezeigt werden, dass Primärproduzenten die empfindlichste taxonomische Gruppe gegenüber Cybutryn sind. Vieles deutet jedoch darauf hin. So ist der spezifische Wirkmechanismus von Cybutryn die Hemmung der Photosynthese und für die akute Toxizität konnte durch einen "Bruch" in der SSD gezeigt werden, dass Algen, höhere Pflanzen und Cyanobakterien die empfindlichsten taxonomischen Gruppe sind (Abbildung A.2).

Da die Datenanforderungen für eine SSD der empfindlichsten taxonomischen Gruppe(n) gemäss TGD for EQS (Commission of the European Communities 2011) erfüllt sind (>10 Datenpunkte zu unterschiedlichen Arten), wurde eine SSD mit den chronischen NOECs/EC10 der Primärproduzenten gemacht (Tabelle 2b - es wurde jeweils der empfindlichste Endpunkt pro Art genommen). Die SSD erfüllt die Anforderungen an die Normalverteilung der Daten (Tabelle A1) - es ist kein "Bruch" in der Verteilung zu sehen (Abbildung 2). Der HC5 für die chronische Toxizität von Cybutryn gegenüber Primärproduzenten ist 0.0116 µg/l.

Im TGD for EQS (Commission of the European Communities 2011) wird für die Ableitung eines AA-EQS basierend auf einem HC5 ein AF von 1-5 vorgeschlagen. Es wurde der Standard-AF von 5 gewählt, da die Verteilung nicht sehr gleichmässig ist (Abbildung 2), die SSD aus weniger als den empfohlenen 15 Datenpunkte besteht und nicht anhand einer SSD gezeigt werden konnte, dass Algen, höhere Pflanzen und Cyanobakterien die emfpindlichsten taxonomischen Gruppen sind.

Cybutryn chronische Toxizität - Primärproduzenten

Abb.2: SSD der chronischen NOEC/EC10 Werte für Primärproduzenten - berechnet mit dem Programm ETX 2.0 (van Vlaardingen et al. 2004).

Mit der SSD Methode ergibt sich:

AA-EQS(SSD) = 0.0116 µg/l/ 5 = 0.0023 µg/l = 2.3 ng/l

Der tiefste NOEC aus einer taxonomischen Gruppe, die nicht zu den Primärproduzenten gehört, liegt mit 4 µg/l (Tabelle 3) um den Faktor 200 höher als das AA-EQS(SSD) von 2.3 ng/l. Es kann also davon ausgegangen werden, dass mit dem AA-EQS(SSD) alle taxonomischen Gruppen geschützt werden. Darauf deuten auch die Ergebnisse aus den vorhandenen Mikro-/ Mesokosmen Studien hin (Tabelle 2d).

AA-EQS Mikro-Mesokosmen Methode

In Tabelle 3b sind die empfindlichsten Endpukte der Multispezies Studien zusammengestellt. In fast allen Studien waren Endpunkte zu Primärproduzenten die empfindlichsten. Zum Teil liegt das zwar daran, dass einige Mikrokosmen nur aus Primärproduzenten bestanden, aber auch in den

Fällen, in denen Tiere sich als am empfindlichsten zeigten (DeLorenzo et al. 2009; Mohr et al. 2008), wurde der Effekt auf eine verminderte Primärproduktion zurückgeführt.

Tab.3b: Tiefste NOEC/EC10 Werte aus Mikro-/ Mesokosmen Studien aus Tabelle 2d. Literaturdaten die in grau dargestellt wurden können nach dem TGD for EQS (Commission of the European Communities 2011) nicht direkt zur EQS-Herleitung verwendet werden, sollen aber als zusätzliche Information genannt werden.

Mikro-/	Art(en)	Para-	Endpunkt	Konz. in	Literaturquelle
Mesokosmos		meter		µg/l	
Süsswasser Teiche	Grünalgen,	EC10	Biomasse	0.001 ^a	Mohr et al. 2008
	Cyclopolde Copepoditen				und UBA 2007
Süsswasser Teiche	<i>Myriophyllum verticillatum</i> (höhere Pflanzen)	EC10	Biomasse (Frisch- gewicht)	0.010 ^a	Mohr et al. 2009
Süsswasser in situ	Phytoplankton aus dem	NOEC	Gemein-	0.004	Nyström et al.
(Genfer See) Plankton	Genter See		schafts-		2002
Kompartimente			struktur (Bray		
			Curtis Index)		
simuliertes, estuarines Salzwiesen Ökosystem	<i>Mercenaria mercenaria</i> (Muscheln)	NOEC	Wachstum (Trocken- gewicht und Schalen- grösse der Muscheln)	0.100	DeLorenzo et al. 2009
mariner Periphyton	marines Periphyton	NOEC	Bray-Curtis	0.016	Dahl and Blanck
MIKrokosmos			Index		1996
simulierter mariner	Seegras und marine	NOEC	Biomasse,	0.323 ^b	Hoberg 2004
in Bottichenmariner	haft		Photo-		Readman et al.
pelagischer			synthese und		2004
WIKIOSOSITIOS			taxonomische		
			Abundanz		
			des Phyto-		
			planktons		
			Artenstruktur		
			(Pigment		
			Analyse)		

^a TWA - nominale Konzentrationen waren um den Faktor 10 höher da Cybutryn während der Studie nur einmal appliziert wurde. Die einmalige Applikation ist auch der Grund, warum die Studie nur als zusätzliche Information für die EQS Ableitung herangezogen wird. ^b TWA

Der tiefste belastbare Wert, liegt bei 4 ng/l (Nyström et al. 2002). Die Studie von Mohr et al. (2008) deutet aber darauf hin, dass signifikante Effekte schon bei > 0.001 ng/l auftreten können. Daher wurde ein Assessment Faktor von 2 gewählt.

AA-EQS(Micro-/Mesokosmen) = 0.004 µg/l/ 2 = 0.002 µg/l = 2 ng/l

AA-EQS Schlussfolgerung

Da EQS, die mittels einer SSD ermittelt wurden, bevorzugt werden (Commission of the European Communities 2011), ergibt sich für Cybutryn ein **AA-EQS von 2.3 ng/l**. Dieser ist nur unwesentlich höher als der mittels der AF-Methode gewonnene Wert (1.7 ng/l) oder der Wert der auf Micro- und Mesokosmen Daten beruht (2 ng/l).

Herleitung des MAC-EQS mit verschiedenen Methoden

Tab. 4: Übersicht der kritischen akuten Toxizitätswerte von Cybutryn auf Wasserorganismen.

Gruppe	Spezies	Wert	Konz. in	Literatur
			μg/l	
Algen/	Navicula pelliculosa	EC50	0.0957	Hughes und
Wasserpflanzen				Alexander
				1993a
Krebstiere	Daphnia magna	EC50	2400	Vial 1990
Fische	Fundulus heteroclitus	EC50	3220	Key et al. 2009
Sonstige	Mysidopsis bahia	EC50	400	Hoberg 1986

Tab. 5: Risikoklassierung der akuten aquatischen Toxizität anhand der niedrigsten gemessenenEC50-Werte nach der Kommission der Europäischen Gemeinschaften (2001):

Risikoklasse	niedrigster EC50-Wert	erreichter
		Wert
nicht eingestuft	>100 mg/l	
schädlich	>10 mg/l; <100mg/l	
giftig	<10 mg/l;>1mg/l	
sehr giftig	< 1mg/l	Х

MAC-EQS Assessment Faktor Methode

Es liegen EC50-Werte für die Organismengruppen der Algen, Kleinkrebse und Fische vor. Um Kurzzeit-Qualitätskriterien (MAC-EQS) herzuleiten, kann die AF-Methode auf der Datenbasis von akuten Toxizitätsdaten verwendet werden. Es müssen mindestens 3 valide EC50-Kurzzeittestergebnisse von Vertretern der 3 trophischen Ebenen (Fische, Krebstiere, Algen) vorhanden sein. Der Standard Assessmentfaktor von 100 kann im Fall von Cybutryn auf 10 verringert werden, da aufgrund der Daten und des bekannten Wirkmechanismus klar gezeigt werden kann, dass (i) Algen und Wasserpflanzen besonders empfindliche taxonomische Gruppen für Cybutryn sind und (ii) Algen im Datensatz enthalten sind. Der empfindlichste belastbare Endpunkt liegt bei dem von Hughes und Alexander (1993a) für die Kieselalge *Navicula pelliculosa* erhobenen EC50 von 0.0957 µg/l. Mit der AF-Methode ergibt sich folgendes Kurzzeit-Qualitätskriterium:

MAC-EQS(AF) = 0.0957 µg/l / 10 = 0.000957 µg/l = 9.6 ng/l

MAC-EQS SSD Methode

Da sehr viele Daten zur akuten Toxizität vorhanden sind, wird zusätzlich die SSD Methode angewendet. Die Datenvoraussetzungen für eine SSD sind, dass EC50 Werte idealerweise für mehr als 15, aber mindestens für 10 unterschiedliche Arten aus mindestens 8 taxonomischen Gruppen vorhanden sind. In den Tabellen 2a und 2c sind valide und relevante EC50 Werte zur akuten Toxizität von 43 Arten aus 8 taxonomischen Gruppen enthalten: Fische, Krebstiere, Mollusken, Echinodermaten, Ascidien, Bakterien, Algen und höhere Pflanzen. Nicht enthalten sind Vertreter der Insekten. Streng genommen sind die Anforderungen des TGD for EQS (Commission of the European Communities 2011) an eine SSD damit nicht erfüllt. Dennoch kann bereits anhand der vorhandenen Taxa gezeigt werden, dass die SSD (generiert mit dem Programm ETX 2.0 von van Vlaardingen et al. 2004) einen deutlichen "Bruch" enthält - Primärproduzenten (Algen, höhere Pflanzen und Cyanobakterien) zeigen EC50 Werte <100 μ g/l, während für alle Arten aus den anderen 6 taxonomischen Gruppen EC50 Werte >500 μ g/l gefunden wurden (Abbildung 3, Tabelle A4). Entsprechend konnte keine Normalverteilung nachgewiesen werden (Tabelle A5).

Abb.3: SSD der akuten EC50 Werte für alle taxonomische Gruppen - berechnet mit dem Programm ETX 2.0 (van Vlaardingen et al. 2004).

Daher wurde zusätzlich eine SSD nur mit den EC50 Werten für Primärproduzenten erstellt (Abbildung 4). In diesem Fall konnte eine Normalverteilung der Daten nachgewiesen werden (Tabelle A6). Anhand dieser SSD konnte für die akute Toxizität von Cybutryn auf Primärproduzenten ein HC5 von 0.107 µg/l ermittelt werden (Tabelle A6).

Cybutryn Akute Toxizität - Primärproduzenten

Abb.4: SSD der akuten EC50 Werte für Primärproduzenten - berechnet mit dem Programm ETX 2.0 (van Vlaardingen et al. 2004).

Im TGD for EQS (Commission of the European Communities 2011) wird für die Ableitung eines MAC-EQS basierend auf einem HC5 standardmässig ein AF von 10 vorgeschlagen. Ein tieferer AF ist aber möglich. Anhaltspunkte für die Wahl eines tieferen AF werden im TGD for EQS (Commission of the European Communities 2011) gegeben. Da die SSD basierend auf den Daten der empfindlichsten taxonomischen Gruppe gemacht wurde und aus deutlich mehr als der empfohlenen 15 Datenpunkte besteht, wird ein AF von 8 gewählt. Daraus ergibt sich:

MAC-EQS(SSD) = 0.107 µg/l / 8 = 0.0134 µg/l = 13 ng/l

MAC-EQS Mikro-Mesokosmen Methode

In Tabelle 6 sind die tieftsen EC50 Werte aus den akuten Mikro-/Mesokosmen Studien zusammengestellt.

Tab.6: Tiefste EC50 Werte aus Mikro-/ Mesokosmen Studien aus Tabelle 2a. Literaturdaten die in grau dargestellt wurden können nach dem TGD for EQS (Commission of the European Communities 2011) nicht direkt zur EQS-Herleitung verwendet werden, sollen aber als zusätzliche Information genannt werden.

Mikro-/	Art(en)	Para-	Endpunkt	Konz. in	Literaturquelle
Mesokosmos		meter		µg/l	
mariner Periphyton Mikrokosmos	marines Periphyton	EC50	Photo- synthese	1.292	Dahl and Blanck 1996
mariner Periphyton Mikrokosmos	marines Periphyton	EC50	Photo- synthese	1.04	Arrhenius et al. 2006
Mariner pelagischer Mikrokosmos	Phytoplankton Gemeinschaft	EC50	Artenzusamm ensetzung	0.07	Readman et al. 2004

Der tiefste EC50 liegt bei 0.07 μ g/l (Readman et al. 2004). Mit einem Assessmentfaktor von 5 ergibt sich:

MAC-EQS(Micro-/Mesokosmen) = 0.07 µg/l / 5 = 0.0014 µg/l = 14 ng/l

MAC-EQS Schlussfolgerung

Da EQS, die mittels einer SSD ermittelt wurden, bevorzugt werden (Commission of the European Communities 2011), ergibt sich für Cybutryn ein **MAC-EQS von 13 ng/l**. Dieser ist etwas höher als der mittels der AF-Methode gewonnene Wert (9.6 ng/l) und nur unwesentlich tiefer als der Wert, der auf Micro- und Mesokosmen Daten beruht (14 ng/l).

Bioakkumulationsabschätzung:

Mit einem gemessenen Wert von 3.38 liegt der log K_{OW} von Cybutryn über 3, dem Triggerwert für die Ableitung eines EQS für sekundäre Intoxikation. Es liegen uns keine belastbaren Bioakkumulationsstudien vor.

Eine Abschätzung der Bioakkumulation kann mit dem log K_{ow} von 3.38 in Anlehnung an das TGD for EQS nach Veith et al. (1979) erstellt werden:

 $\log BKF_{Fisch} = 0.85 \times \log K_{ow} - 0.70 = 2.173; BKF_{Fisch} = 149$

nach dem TGD for EQS kann diesem Wert ein Biomagnifikationsfaktor (BMF) von 1 zugewiesen werden. Da der BKF höher als der Schwellenwert von 100 ist, müsste nach dem TGD for EQS ein EQS_{biota} Wert abgeleitet werden.

Es konnte kein verlässlicher PNEC_{Oral} gefunden werden, um einen EQS_{Biota} abzuleiten. Ein sekundäres Intoxikationsrisiko kann zwar nicht ausgeschlossen werden, allerdings deuten der pflanzenspezifische Wirkmechanismus, die vergleichsweise geringe Toxizität gegenüber tierischen Arten und die bereits sehr tiefen EQS-Werte für aquatische Organismen darauf hin, dass die Ableitung eines EQS-Wertes für das sekundäre Intoxikationsrisiko nicht zu einem niedrigeren AA-EQS Wert führen würde. Dies wird durch den EQS_{biota} Wert von 0.9 μg/l aus dem EQS Dossierentwurf der EU (Kommission der Europäischen Gemeinschaften 2010) bestätigt.

Ökotoxizität des Abbauproduktes von Cybutryn

Das Hauptabbauprodukt von Cybutryn ist der Metabolit M1 (GS 26575), der von seiner Struktur her immer noch in die Gruppe der s-Triazine gehört (Abbildung 5) und gleichfalls eine hohe Ökotoxizität aufweist. So konnten Burkhardt et al. (2009) zeigen, dass M1 eine Toxizität auf Primärproduzenten hat, die höher ist als die von Atrazin (Abbildung 6).

Abb.5: Strukturformel von M1 (GS 26575). Der dazugehörige SMILES Code ist CSc1nc(N)nc(NC(C)(C)C)n1.

Abb.6: SSD für NOEC-Daten von Cybutryn und Atrazin sowie NOEC-Daten für den Metabolit M1, welcher aus Cybutryn gebildet wird. Die Abbildung stammt aus Burkhardt et al. (2009).

In einer mehrmonatigen Fliessgewässerstudie konnte gezeigt werden, dass M1 bereits innerhalb der ersten 24 h nach der Applikation von Cybutryn in der Wasserphase nachgewiesen werden

kann und dass die Konzentration von M1 über mehrer Monate stabil bleibt (Umweltbundesamt 2007). Es deutet daher vieles daraufhin, dass auch der Metabolit M1 eine hohe Umweltrelevanz haben könnte. Es wird daher empfohlen, M1 bei der Überwachung der EQS für Cybutryn mitzumessen und basierend auf den erhobenen Daten zu entscheiden, ob M1 eine relevante Mikroverunreinigung ist und damit auch für M1 EQS abgeleitet werden sollten. Die Bestimmungsgrenze in wässrigen Proben mit SPE und GC-MS wurden für M1 mit 1-8 ng/l angegeben (Umweltbundesamt 2007).

Schutz der aquatischen Organismen

Der Effektdatensatz für Cybutryn umfasst alle 3 trophischen Ebenen bei den Kurzzeit- und Langzeittoxizitäten. Die drei Gruppen der Primärproduzenten (Algen, höhere Pflanzen und Cyanobakterien) haben sich als die empfindlichsten taxonomischen Gruppen erwiesen. Sowohl für die akute als auch für die chronische Toxizität konnte der EQS über die SSD Methode abgeleitet werden. Die EQS konnten durch EQS für Mikro-/ Mesokosmenstudien gestützt werden. Einen Überblick über die abgeleiteten EQS gibt Tabelle 7.

EQS	MAC-EQS (µg/l)	AA-EQS(µg/l)
AF-Methode	0.0096	0.0017
SSD Methode	0.013	0.0023
Mikro-	0.014	0.002
/Mesokosmen		
Methode		
Definitives EQS	0.013	0.0023

Tab. 7: Überblick über die nach verschiedenen Methoden abgleiteten EQS für Cybutryn

Ein sekundäres Intoxikationsrisiko kann derzeit zwar nicht ausgeschlossen werden, es ist aber nicht wahrscheinlich, dass es zu einer Verringerung des AA-EQS führen würde.

Da für Cybutryn in Süssgewässern der persistente Metabolit M1 nachgewiesen werden konnte, der zwar eine geringere Toxizität gegenüber Primärproduzenten als Cybutryn selbst aufweist, aber dessen Toxizität immer noch höher ist als die von dem anderen s-Triazin Atrazin, wird empfohlen, diesen Metaboliten bei der Überwachung der EQS für Cybutryn mitzumessen und basierend auf den erhobenen Daten zu entscheiden, ob auch für M1 EQS abgeleitet werden sollten.

Das hergeleite MAC-EQS von 0.013 μ g/l und das AA-EQS von 0.0023 μ g/l können als sehr robust angesehen werden, da beide von einer SSD abgeleitet wurden. Sie sollten daher einen

ausreichenden Schutz für aquatische Organismen unterschiedlicher trophischer Ebenen bieten und trotzdem nicht überprotektiv sein. Es ist noch zu erwähnen, dass die beiden EQS sehr nah an der Bestimmungsgrenze von Cybutryn von 1-4 µg/l sind (Umweltbundesamt 2007). Zurzeit gilt also: wenn Cybutryn bestimmt werden kann, ist das AA-EQS überschritten vermutlich überschritten. Für die Überwachung der Cybutryn Qualitätsziele sollte daher noch versucht werden, die chemische Analytik zu verbessern.

Literatur

Andersson S (1995): Algal test, *Fucus vesiculosus*. Department of systems ecology, Stockholm University, Stockholm, Sweden; unpublished report, September 1, 1995. Klimisch Bewertung übernommen von Kommission der Europäischen Gemeinschaften (2010).

Arrhenius A, Backhaus T, Grönvall F, Junghans M, Scholze M, Blanck H (2006): Effects of three antifouling agents on algal communities and algal reproduction: Mixture toxicity studies with TBT, Irgarol, and Sea-Nine. Archives of Environmental Contamination and Toxicology 50(3): 335-345

Bakoulia P, Marcouli P, Iliopoulou-Georgudaki J (2002): Acute toxicity of TBT and Irgarol in *Artemia salina*. International Journal of Toxicology 21(3): 231-233

Bellas J (2006): Comparative toxicity and of alternative antifouling biocides on embryos larvae of marine invertebrates. The Scince of the Total Environment 367(2-3): 573-585

Berard A, Dorigo U, Mercier I, Becker-van Slooten K, Grandjean D, Leboulanger C (2003): Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva. Chemosphere 53(8): 935-944

Boeri R L, Ward T J (1991): Life Cycle Toxicity of Irgarol 1051 to the Mysid, *Mysidopsis bahia*. Hampton, NH: EnviroSystems Division, Resource Analysts, Inc. Report no. 9086-CG zitiert in Hall *et al.* (1999). Wenn vorhanden Klimisch Bewertung übernommen von Kommission der Europäischen Gemeinschaften (2010).

Bowyer J R, Camillieri P, Vermaas W F J (1991): Photosystem II and its interaction with herbicides. Amsterdam: Elsevier

Braithwaite R A, Fletcher R L (2005): The toxicity of Irgarol 1051 and Sea-Nine 211 to the nontarget macroalga *Fucus serratus* Linnaeus, with the aid of an image capture and analysis system. Journal of Experimental Marine Biology and Ecology 322(2): 111-121

Buma A G J, Sjollema S B, van de Poll W H, Klamer H J C, Bakker J F (2009): Impact of the antifouling agent Irgarol 1051 on marine phytoplankton species. Journal of Sea Research 61(3): 133-139

Burkhardt M, Junghans M, Zuleeg S, Schoknecht U, Lamani X, Bester K, Vonbank R, Simmler H, Boller M (2009): Biozide in Gebäudefassaden - Ökotoxikologische Effekte, Auswaschung und Belastungsabschätzung für Gewässer. Umweltwissenschaften und Schadstoffforschung 21(1): 36-47

Chandler A B (1989): Acute toxicity of Irgarol 1051 to the inland silverside (*Menidia beryllina*) in a static test. ESE, Gainesville, Florida, USA; unpublished report no. 87356-0240-3140, January 10, 1989. Klimisch Bewertung übernommen von Kommission der Europäischen Gemeinschaften (2010)

Chesworth J C, Donkin M E, Brown M T (2004): The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass *Zostera marina* (L.). Aquatic Toxicology 66(3): 293-305

Cohle P, Veltri J L (1994): Early life-stage toxicity of Irgarol 1051 to rainbow trout (*Oncorhynchus mykiss*) in a flow-through system. Columbia, MO: Analytical Bio-Chemistry Laboratories, Inc.

Report no. 40949. Klimisch Bewertung übernommen von Kommission der Europäischen Gemeinschaften (2010).

Comber SDW, Franklin G, Gardner MJ, Watts CD, Boxall ABA, Howcroft J (2002): Partioning of marine antifoulants in the marine environment. The Science of the Total Environment 286: 61-71

Commission of the European Communities (2011): Common Implementation Strategy for the Water Framework Directive (2000/60/EC): Guidance Document No. 27 - Technical Guidance For Deriving Environmental Quality Standards. Technical Report - 2011 – 055

Dahl B, Blanck H (1996): Toxic effects of the antifouling agent Irgarol 1051 on periphyton communities in coastal water microcosms. Marine Pollution Bulletin 32(4): 342-350

DeLorenzo M E, Pennington P L, Chung K W, Finnegan M C, Fulton M H (2009): Effects of the antifouling compound, Irgarol 1051, on a simulated estuarine salt marsh ecosystem. Ecotoxicology 18(2): 250-258

DeLorenzo M E, Serrano L (2006): Mixture toxicity of the antifouling compound irgarol to the marine phytoplankton species *Dunaliella tertiolecta*. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes 41(8): 1349-1360

Devilla R A, Brown M T, Donkin M, Readman J W (2005): The effects of a PSII inhibitor on phytoplankton community structure as assessed by HPLC pigment analyses, microscopy and flow cytometry. Aquatic Toxicology 71(1): 25-38

European Comission (2010): ESIS (European Chemical Substances Information System): Joint Research Center - Institute for Health and Consumer Protection, <u>http://esis.jrc.ec.europa.eu/</u>

Faria M, Lopez M A, Fernandez-Sanjuan M, Lacorte S, Barata C (2010): Comparative toxicity of single and combined mixtures of selected pollutants among larval stages of the native freshwater mussels (*Unio elongatulus*) and the invasive zebra mussel (*Dreissena polymorpha*). The Science of the Totoal Environment 408(12): 2452-2458

Fernandez-Alba A R, Hernando M D, Piedra L, Chisti Y (2002): Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Analytica Chimica Acta 456(2): 303-312

Finnegan M C, Pittman S, DeLorenzo M E (2009): Lethal and sublethal toxicity of the antifoulant compound irgarol 1051 to the mud snail *Ilyanassa obsoleta*. Archives of Environmental Contamination and Toxicology 56(1): 85-95

Gatidou G, Thomaidis N S (2007): Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays. Aquatic Toxicology 85(3): 184-191

Hall J, Anderson R D, Ailstock M S (1999): Chronic toxicity of Irgarol 1051 to submerged aquatic macrophytes. Final Report Queenstown, MD: University of Maryland, Wye Research and Education Center. Klimisch Bewertung übernommen von Kommission der Europäischen Gemeinschaften (2010).

Hall Jr L W, Giddings J M, Solomon K R, Balcomb R (1999): An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifoulant paints. Critical Reviews in Toxicology 29(4): 367-437

Hall Jr L W, Killen W D, Anderson R D, Balcomb R, Gardinali P (2009): Ecological risk of Irgarol 1051 and its major metabolite in coastal California marinas and reference areas. Marine Pollution Bulletin 58: 702–710

Hernando M D, Ejerhoon M, Fernandez-Alba A R, Chisti Y (2003): Combined toxicity effects of MTBE and pesticides measured with *Vibrio fischeri* and *Daphnia magna* bioassays. Water Research 37(17): 4091-4098

Hernando M D, Fernandez-Alba A R, Tauler R, Barcelo D (2005): Toxicity assays applied to wastewater treatment. Talanta 65(2 SPEC. ISS.): 358-366

Hoberg J R (1986): Acute toxicity of TK 13079 tp mysid shrimp (*Mysidopsis bahia*). Springborn Bionomics, Inc, Wareham, Massachusetts, USA; unpublished report no BW-86-1-1912, January 25, 1986. Klimisch Bewertung übernommen von Kommission der Europäischen Gemeinschaften (2010).

Hoberg J R (1998b): *Irgarol 1051* - Toxicity to the marine green algae *Chlorococcum sp.* Wareham, MA: Springborn Laboratories, Inc. zitiert in Hall *et al.* 2009

Hoberg J R (1998c): Irgarol 1051 - Toxicity to a golden brown algae, *Isochrysis galbana* Wareham, MA: Springborn Laboratories, Inc. zitiert in Hall *et al.* 2009

Hoberg J R (1998d): Irgarol 1051 - Toxicity to the marine dinoflagellate *Dunaliella tertiolecta* Wareham, MA: Springborn Laboratories, Inc. zitiert in Hall *et al.* 2009

Hoberg J R (2004): Irgarol 1051 - Fate and effects in marine microcosms Wareham, MA: Springborn Smithers. zitiert in Hall *et al.* 2009. Klimisch Bewertung übernommen von Kommission der Europäischen Gemeinschaften (2010).

Hughes H J, Alexander M M (1993a): The toxicity of Irgarol 1051 to *Navicula pelliculosa* Tarrytown, NY: Malcolm Pirnie, Inc. zitiert in Hall *et al.* 2009, Klimisch Bewertung übernommen von Kommission der Europäischen Gemeinschaften (2010)

Hughes H J, Alexander M M (1993b): The toxicity of Irgarol 1051 to *Skeletonema costatum* Tarrytown, NY: Malcolm Pirnie, Inc. zitiert in Hall *et al.* 2009, Klimisch Bewertung übernommen von Kommission der Europäischen Gemeinschaften (2010)

Hughes H J, Alexander M M (1993c): The toxicity of Irgarol 1051 to Anabaena flosaquae Tarrytown, NY: Malcolm Pirnie, Inc. zitiert in Hall *et al.* 2009

Hughes H J, Alexander M M (1993d): The toxicity of Irgarol 1051 to *Selenastrum capricornutum* Tarrytown, NY: Malcolm Pirnie, Inc. zitiert in Hall *et al.* 2009

Hughes H J, Alexander M M (1993e): The toxicity of Irgarol 1051 to *Lemna gibba* G3 Tarrytown, NY: Malcolm Pirnie, Inc. zitiert in Hall *et al.* 2009, Klimisch Bewertung übernommen von Kommission der Europäischen Gemeinschaften (2010)

Jones R J, Kerswell A P (2003): Phytotoxicity of Photosystem II (PSII) herbicides to coral. Marine Ecology Progress Series 261: 149-159

Jongbloed R, Luttik R (1996): 2-Methylthio-4-tertbutylamino-cyclopropylamino-s-triazine (Irgarol 1051). Advisory report no. 4351 RIVM/CSR. Zitiert in van Wezel and van Vlaardingen (2004)

Kahle M, Nöh I (2009): Biozide in Gewässern - Eintragspfade und Informationen zur Belastungssituation und deren Auswirkungen UMWELTBUNDESAMT. Dessau-Roßlau: Umweltbundesamt (Deutschland). ISSN 1862-4804

Karickhoff S W, Carreira L A, Hilal S H (2009): SPARC v.4.5 online calculator <u>http://archemcalc.com/sparc/</u>

Karlsson J, Breitholtz M, Eklund B (2006): A practical ranking system to compare toxicity of antifouling paints. Marine Pollution Bulletin 52(12): 1661-1667

Key P B, Chung K W, Hoguet J, Sapozhnikova Y, Fulton M H (2008): Effects of the anti-fouling herbicide Irgarol 1051 on two life stages of the grass shrimp, *Palaemonetes pugio*. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes 43(1): 50-55

Key P B, Hoguet J, Chung K W, Venturella J J, Pennington P L, Fulton M H (2009): Lethal and sublethal effects of simvastatin, irgarol, and PBDE-47 on the estuarine fish, *Fundulus heteroclitus*. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes 44(4): 379-382

Khandeparker L, Desai D, Shirayama Y (2005): Larval development and post-settlement metamorphosis of the barnacle Balanus albicostatus Pilsbry and the serpulid polychaete *Pomatoleios kraussii* Baird: Impact of a commonly used antifouling biocide, Irgarol 1051. Biofouling 21(3-4): 169-180

Klimisch H J, Andreae M, Tillmann U (1997): A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology 25(1): 1-5

Kommission der Europäischen Gemeinschaften (2001): Richtlinie 2001/59/EG der Kommission vom 6. August 2001 zur 28. Anpassung der Richtlinie 67/548/EWG des Rates zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten für die Einstufung, Verpackung und Kennzeichnung gefährlicher Stoffe an den technischen Fortschritt. Annex 6. In *Amtsblatt der europäischen Gemeinschaften L225/263 (<u>http://eur-lexeuropaeu/JOIndexdo?year=2001&serie=L&textfield2=225&Submit=Search&_submit=Search&i hmlang=en</u>)*

Kommission der Europäischen Gemeinschaften (2010). Cybutryne EQS draft dossier 20101229. Zugriff 05.01.2012.

Konstantinou I K, Albanis T A (2004): Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environment International 30(2): 235-248

Koutsaftis A, Aoyama I (2006): The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae *Chaetoceros gracilis*. Environmental Toxicology 21(4): 432-439

Lam K H, Wai H Y, Leung K M Y, Tsang V W H, Tang C F, Cheung R Y H, Lam M H W (2006): A study of the partitioning behavior of Irgarol-1051 and its transformation products. Chemosphere 64(7): 1177-1184

Lambert S J, Thomas K V, Davy A J (2006): Assessment of the risk posed by the antifouling booster biocides Irgarol 1051 and diuron to freshwater macrophytes. Chemosphere 63(5): 734-743

Lamborpoulou DA, Sakkas VA, Albanis TA (2004): Partioning of antifouling agents, irgarol 10551 and sea nine 211, to humic organic matter investigated by solid-phase microextraction. International Journal of Anvironmental Analytical Chemistry 84(1): 47-54

LMC Oasis Laboratory of Mathematical Chemistry (2009): QSAR Application Toolbox, Development OfECa (ed)

Manzo S, Buono S, Cremisini C (2006): Toxic effects of Irgarol and Diuron on sea urchin *Paracentrotus lividus* early development, fertilization, and offspring quality. Archives of Environmental Contamination and Toxicology 51(1): 61-68

Mohr S, Berghahn R, Mailahn W, Schmiediche R, Feibicke M, Schmidt R (2009): Toxic and accumulative potential of the antifouling biocide and TBT successor Irgarol on freshwater macrophytes: A pond mesocosm study. Environmental Science and Technology 43(17): 6838-6843

Mohr S, Schröder H, Feibicke M, Berghahn R, Arp W, Nicklisch A (2008): Long-term effects of the antifouling booster biocide Irgarol 1051 on periphyton, plankton and ecosystem function in freshwater pond mesocosms. Aquatic Toxicology 90(2): 109-120

Munoz I, Martinez Bueno M J, Aguera A, Fernandez-Alba A R (2010): Environmental and human health risk assessment of organic micro-pollutants occurring in a Spanish marine fish farm. Environmental Pollution 158(5): 1809-1816

Neuwoehner J, Junghans M, Koller M, Escher B I (2008): QSAR analysis and specific endpoints for classifying the physiological modes of action of biocides in synchronous green algae. Aquatic Toxicology 90(1): 8-18

Nyström B, Becker-van Slooten K, Berard A, Grandjean D, Druart J C, Leboulanger C (2002): Toxic effects of Irgarol 1051 on phytoplankton and macrophytes in Lake Geneva. Water Res 36(8): 2020-2028

Okamura H, Aoyama I, Liu D, Maguire R J, Pacepavicius G J, Lau Y L (2000a): Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Research 34(14): 3523-3530

Okamura H, Aoyama I, Takami T, Maruyama T, Suzuki Y, Matsumoto M, Katsuyama I, Hamada J, Beppu T, Tanaka O, Maguire R J, Liu D, Lau Y L, Pacepavicius G J (2000b): Phytotoxicity of the new antifouling compound Irgarol 1051 and a major degradation product. Marine Pollution Bulletin 40(9): 754-763

Okamura H, Watanabe T, Aoyama I, Hasobe M (2002): Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere 46(7): 945-951

Okamura H, Nishida T, Ono Y, Shim W J (2003): Phytotoxic Effects of Antifouling Compounds on Nontarget Plant Species. Bulletin of Environmental Contamination and Toxicology 71(5): 881-886

Paulus W (2004) Directory of Microbicides for the Protection of Materials. Dordrecht: Springer Readman J W, Devilla R A, Tarran G, Llewellyn C A, Fileman T W, Easton A, Burkill P H, Mantoura R F C (2004): Flow cytometry and pigment analyses as tools to investigate the toxicity of herbicides to natural phytoplankton communities. Marine Environmental Research 58(2-5): 353-358

Rufli H (1985): Report on the test for acute toxicity of TK 13079 to rainbow trout. CIBA-GEIGY Ltd, Basel, Switzerland; unpublished report no 850487, August 8, 1985. Klimisch Bewertung übernommen von Kommission der Europäischen Gemeinschaften (2010).

Rufli H (1988) Report on the algae growth inhibition test with TK 13079 Basel, Switzerland: CIBA-Geigy Ltd.

Sapozhnikova Y, Pennington P, Wirth E, Fulton M (2009): Fate and transport of Irgarol 1051 in a modular estuarine mesocosm. Journal of Environmental Monitoring 11(4): 808-814

Scarlett A, Donkin M E, Fileman T W, Donkin P (1997): Occurrence of the marine antifouling agent Irgarol 1051 within the Plymouth Sound locality: Implications for the green macroalga *Enteromorpha intestinalis*. Marine Pollution Bulletin 34(8): 645-651

Scarlett A, Donkin P, Fileman T W, Evans S V, Donkin M E (1999): Risk posed by the antifouling agent Irgarol 1051 to the seagrass, *Zostera marina*. Aquatic Toxicology 45(2-3): 159-170

Schmiedel U (1997): Determination of the partition coefficient (n-octanol/water) of TK 13079 (Irgarol 1051). Itingen, Switzerland: RCC Umweltchemie AG.

Seery C R, Gunthorpe L, Ralph P J (2006): Herbicide impact on *Hormosira banksii* gametes measured by fluorescence and germination bioassays. Environmental Pollution 140(1): 43-51

Sousa J V (2001): Irgarol 1051 - Early life-stage toxicity test with sheepshead minnow (*Cyprinodon variegatus*). Springborn Laboratories, Inc, Wareham, Massachusetts, USA; unpublished report no 136586134, July 30, 2001. Klimisch Bewertung übernommen von Kommission der Europäischen Gemeinschaften (2010).

Tietjen K G, Kluth J F, Andree R, Haug M, Lindig M, Müller K H, Wroblowsky H J, Trebst A (1991): The herbicide binding niche of photosytem II - a model. Pesticide Science 31 65-72

Umweltbundesamt (2007) Field, fate and effect studies on the biocide N-tert-butyl-N'-cyclopropyl-6-methylthio-1,3,5-triazine-2,4-diamine Irgarol® (CAS-No 28159-98-0): Artificial Pond and Stream System (FSA): Federal Environment Agency, Germany.

US EPA (2011): EPI Suite[™] v4.10, http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm van Vlaardingen P, Traas T, Aldenberg T, Wintersen A (2004): ETX Bilthoven, Niederlande: RIVM - National Institute of Public Health and the Environment

van Wezel A, van Vlaardingen P (2004): Environmental risk limits for antifouling substances. Aquatic Toxicology 66: 427–444

Veith G D, Defoe D L, Bergstedt B. V. (1979): Measuring and estimating the bioconcentration factor of chemicals in fish. Journal of the Fisheries Research Board of Canada 36 1040-1048

Vial A (1990): Test for acute toxicity of Irgarol 1051 to *Daphnia magna*. CIBA-GEIGY Ltd, Basel, Switzerland; unpublished report no 894289, January 10, 1990. Klimisch Bewertung übernommen von Kommission der Europäischen Gemeinschaften (2010).

Zhang A Q, Leung K M Y, Kwok K W H, Bao V W W, Lam M H W (2008): Toxicities of antifouling biocide Irgarol 1051 and its major degraded product to marine primary producers. Marine Pollution Bulletin 57(6-12): 575-586

Appendix

Tab. A1: "Goodness of fit" für die SSD der chronischen NOEC/EC10 Werte für Primärproduzenten - berechnet mit dem Programm ETX 2.0 (van Vlaardingen et al. 2004).

Anderson-Da	arling test f	or normali	ty		
Sign. level	Critical	Normal?			
0.1	0.631	Accepted			
0.05	0.752	Accepted		AD Statistic:	0.331776
0.025	0.873	Accepted		n:	12
0.01	1.035	Accepted			
Kolmogorov-	Smirnov te	est for nori	mality		
Sign. level	Critical	Normal?			
0.1	0.819	Accepted			
0.05	0.895	Accepted		KS Statistic:	0.637822
0.025	0.995	Accepted		n:	12
0.01	1.035	Accepted			
Cramer von M	⁄lises test f	^f or normal	ity		
Sign. level	Critical	Normal?			
0.1	0.104	Accepted			
0.05	0.126	Accepted		CM Statistic:	0.044404
0.025	0.148	Accepted		n:	12
0.01	0.179	Accepted			

SSD Histogram and PDF

Abb.A1: Histogramm für die SSD der chronischen NOEC/EC10 Werte für Primärproduzenten - berechnet mit dem Programm ETX 2.0 (van Vlaardingen et al. 2004).

Tab. A2: HC5 der SSD der chronischen NOEC/EC10 Werte für Primärproduzenten - berechnet mit dem Programm ETX 2.0 (van Vlaardingen et al. 2004).

Parameters of the normal distribution						
Name	Value	Description				
mean	-0.6644	mean of the log t	mean of the log toxicity values			
s.d.	0.751505	sample standard	deviation			
n	12	sample size				
HC5 result	ts					
Name	Value	log10(Value)	Description			
LL HC5	0.001902	-2.720771168	lower estimate of the HC5			
HC5	0.01161	-1.935160669	median estimate of the HC5			
UL HC5	0.034447	-1.462846593	upper estimate of the HC5			
sprHC5	18.11026	1.257924576	spread of the HC5 estimate			
FA At HC5	results					
Name	Value	Description				
FA lower	0.774	5% confidence limit of the FA at standardised median logHC5				
FA media	5	50% confidence li	mit of the FA at standardised m	nedian logHC5		
FA upper	18.064	95% confidence li	mit of the FA at standardised m	nedian logHC5		
HC50 resu	lts					
Name	Value	log10(Value)	Description			
LL HC50	0.088308	-1.053997633	lower estimate of the HC50			
HC50	0.216572	-0.66439715	median estimate of the HC50			
UL HC50	0.531133	-0.274796667	upper estimate of the HC50			
sprHC50	6.01452	0.779200965	spread of the HC50 estimate			
FA At HC5	0 results					
Name	Value	Description				
FA lower	31.74547	5% confidence lin	nit of the FA at standardised me	edian logHC50		
FA media	50	50% confidence li	mit of the FA at standardised m	nedian logHC50		
FA upper	68.25453	95% confidence limit of the FA at standardised median logHC50				

Tab. A3: Daten, aus denen die SSD der chronischen NOEC/EC10 Werte für Primärproduzenten besteht - in der Reihenfolge steigender NOEC/EC10 Werte.

Daten Nr.	NOEC (µg/l)	Art
1	0.017	Navicula pelliculosa
2	0.047	Thalassiosira pseudonana
3	0.05	Enteromorpha intestinalis
4	0.05667	Skeletonema costatum
5	0.09	Dunaliella tertiolecta
6	0.1	Nitszchia sp.
7	0.32	Eisenia bicyclis
8	0.5	Zostera marina
9	0.507	Scenedesmus vacuolatus
10	0.671	Lemna gibba
11	1.2	Porphyra yezoensis
12	8	Fucus serratus

Tab. A4: Daten, aus denen die SSD der akuten EC50 Werte für alle taxonomische Gruppenbesteht - in der Reihenfolge steigender EC50 Werte. Daten der Nummern 1-31 wurden für dieSSD basierend auf den Primärproduzenten verwendet.

Data no	EC50 (µg/l)	Art	taxonomische Gruppe
1	0.0957	Navicula pelliculosa	Algen
2	0.116	Tetraselmis sp.	Algen
3	0.16	Synechococcus sp.	Cyanobakterien
4	0.17	Hormosira banksii	Algen
5	0.27	Thalassiosira pseudonana	Algen
6	0.277	Skeletonema costatum	Algen
7	0.303	Thalassiosira weissflogii	Algen
8	0.319	Emiliana huxleyi	Algen
9	0.325	Fucus vesiculosus	Algen
10	0.47	Navicula accomoda	Algen
11	0.5	Chlamydomonas intermedia	Algen
12	0.6	Porphyra yezoensis	Algen
13	0.618	Fibrocapsa japonica	Algen
14	0.73	Dunaliella tertiolecta	Algen
15	0.75	Nitszchia sp.	Algen
16	0.843	Ruppia maritima	höhere Pflanzen
17	0.96	Ceramium tenuicorne	Algen
18	1.1	Chaetocerus gracilis	Algen
19	1.1	Navicula forcipata	Algen
20	1.47	Chlorella vulgaris	Algen
21	2.5	Staurastrum sebaldii	Algen
22	2.92	Eisenia bicyclis	Algen
23	3	Closterium ehrenbergii	Algen
24	3.3	Pseudokirchneriella subcapitata	Algen
25	4.26	Lemna gibba	höhere Pflanzen
26	5.1	Scenedesmus acutus	Algen
27	5.4	Enteromorpha intestinalis	Algen
28	6.76	Pseudokirchneriella subcapitata	Algen
29	7.71	Chroococcus minor	Cyanobakterien
30	8.1	Lemna minor	höhere Pflanzen
31	8.48	Scenedesmus vacuolatus	Algen
32	400	Mysidopsis bahia	Krebstiere
33	556	Balanus albicostatus	Krebstiere
34	1760	Menidia beryllina	Fische
35	2110	Ciona intestinalis	Ascidien
36	2460	Palaeomonetes pugio	Krebstiere
37	3160	Ilyanassa obsoleta	Mollusken
38	3220	Fundulus heteroclitus	Fische
39	4500	Nitocra spinipes	Krebstiere
40	4657	Oncorhynchus mykiss	Fische
41	5708	Daphnia magna	Krebstiere
42	6030	Paracentrotus lividus	Echinodermaten
43	12000	Thamnocephalus platyurus	Krebstiere
44	28061	Vibrio fischeri	Bakterien

Tab. A5: "Goodness of fit" für die SSD der akuten EC50 Werte für alle taxonomische Gruppen - berechnet mit dem Programm ETX 2.0 (van Vlaardingen et al. 2004).

Anderson-[nderson-Darling test for normality					
Sign. level	Critical	Normal?				
0.1	0.631	Rejected				
0.05	0.752	Rejected		AD Statistic:	2.964474	
0.025	0.873	Rejected		n:	44	
0.01	1.035	Rejected				
Kolmogoro	v-Smirnov	test for no	rmality			
Sign. level	Critical	Normal?				
0.1	0.819	Rejected				
0.05	0.895	Rejected		KS Statistic:	1.560321	
0.025	0.995	Rejected		n:	44	
0.01	1.035	Rejected				
Cramer von	Mises test	t for norma	ality			
Sign. level	Critical	Normal?				
0.1	0.104	Rejected				
0.05	0.126	Rejected		CM Statistic:	0.523072	
0.025	0.148	Rejected		n:	44	
0.01	0.179	Rejected				

SSD Histogram and PDF

Abb.A2: Histogramm für die SSD der akuten EC50 Werte für alle taxonomische Gruppen - berechnet mit dem Programm ETX 2.0 (van Vlaardingen et al. 2004).

Tab. 6: "Goodness of fit" für die SSD der akuten EC50 Werte für Primärproduzenten - berechnet mit dem Programm ETX 2.0 (van Vlaardingen et al. 2004).

Anderson-D	nderson-Darling test for normality					
Sign. level	Critical	Normal?				
0.1	0.631	Accepted				
0.05	0.752	Accepted		AD Statistic:	0.464276	
0.025	0.873	Accepted		n:	31	
0.01	1.035	Accepted				
Kolmogorov-Smirnov test for normality						
Sign. level	Critical	Normal?				
0.1	0.819	Accepted				
0.05	0.895	Accepted		KS Statistic:	0.603564	
0.025	0.995	Accepted		n:	31	
0.01	1.035	Accepted				
Cramer von	Mises test	for norma	lity			
Sign. level	Critical	Normal?				
0.1	0.104	Accepted				
0.05	0.126	Accepted		CM Statistic:	0.066283	
0.025	0.148	Accepted		n:	31	
0.01	0.179	Accepted				

Cybutryn Akute Toxizität - Primärproduzenten

Abb.A3: Histogramm für die SSD der akuten EC50 Werte für Primärproduzenten - berechnet mit dem Programm ETX 2.0 (van Vlaardingen et al. 2004).

Tab. A7: HC5 der SSD der akuten EC50 Werte für Primärproduzenten - berechnet mit dem Programm ETX 2.0 (van Vlaardingen et al. 2004).

Parameters of the normal distribution			
Name	Value	Description	
mean	0.00548	mean of the log toxicity values	
s.d.	0.58754	sample standard deviation	
n	31	sample size	
	-		
HC5 results			
Name	Value	log10(Value)	Description
LL HC5	0.05107	-1.29181	lower estimate of the HC5
HC5	0.10699	-0.97066	median estimate of the HC5
UL HC5	0.18530	-0.73212	upper estimate of the HC5
sprHC5	3.62820	0.55969	spread of the HC5 estimate
FA At HC5 results			
Name	Value	Description	
FA lower	1.73	5% confidence limit of the FA at standardised median logHC5	
FA median	5.00	50% confidence limit of the FA at standardised median logHC5	
FA upper	9.76	95% confidence limit of the FA at standardised median logHC5	
HC50 results			
Name	Value	log10(Value)	Description
LL HC50	0.67046	-0.17362	lower estimate of the HC50
HC50	1.01270	0.00548	median estimate of the HC50
UL HC50	1.52963	0.18459	upper estimate of the HC50
sprHC50	2.28144	0.35821	spread of the HC50 estimate
FA At HC50 results			
Name	Value	Description	
FA lower	38.37	5% confidence limit of the FA at standardised median logHC50	
FA median	50.00	50% confidence limit of the FA at standardised median logHC50	
FA upper	61.63	95% confidence limit of the FA at standardised median logHC50	