

Schweizerisches Zentrum für angewandte Ökotoxikologie Centre Suisse d'écotoxicologie appliquée Eawag-EPFL

EQS - Vorschlag des Oekotoxzentrums für:

Propranolol

Literaturrecherche: 14.03.2013 Finale Version: 21.06.2013

EQS-Vorschläge

AA-EQS: 0.160 µg/L

MAC-EQS: 12 μg/L

1 Physikochemische Parameter

In Tabelle 1 werden Identität sowie chemische und physikalische Parameter für die chirale Substanz Propranolol angegeben. Vollständigkeitshalber werden auch Angaben zu den einzelnen Isomeren und den jeweiligen Hydrochloriden gemacht. Dies weil auch Effektdaten zu den zwei Isomeren vorliegen und Propranolol meistens als Hydrochlorid appliziert wurde. Wo bekannt, wird mit (exp) spezifiziert, dass es sich um experimentell erhobene Daten handelt, während es sich bei mit (est) gekennzeichneten Daten um abgeschätzte Werte handelt. Wenn keine dieser beiden Angaben hinter den Werten steht, fand sich in der zitierten Literatur keine Angabe.

Tabelle 1Geforderte Angaben zu Propranolol nach dem TGD for EQS (EC 2011). Zusätzliche Angaben in kursiv. (±)-
Propranolol bezeichnet das razemische Gemisch (ein 50:50-Mischungsverhältnis von S-(-)- und R-(+)-Propranolol), (S)-(-)- und (R)-(+)-Propranolol sind die jeweiligen Enantiomere. Propranololhydrochlorid wird als (±)-Propranolol-HCI, bzw. (S)-
(-)- und (R)-(+)-Propranolol-HCI bezeichnet. exp = experimentell erhobene Werte; est = geschätzte Werte; iPr = Isopropanol; P = Propranolol; P-HCI = Propranolol-Hydrochlorid

Eigenschaften	Name/Wert	Referenz
IUPAC Name	(±)-Propranolol 1-naphthalen-1-yloxy-3-(propan-2-ylamino)propan-2-ol	Pubchem 2013
	(S)-(-)-Propranolol (S)-1-(isopropylamino)-3-(naphthyloxy)propan-2-ol (2S)-1-naphthalen-1-yloxy-3-(propan-2-ylamino)propan-2-ol	ESIS 2013 Pubchem 2013
	(R)-(+)-Propranolol (2R)-1-naphthalen-1-yloxy-3-(propan-2-ylamino)propan-2-ol	Pubchem 2013
	(±)-Propranolol-HCl (±)-[2-hydroxy-3-(naphthyloxy)propyl]isopropylammonium chloride (CAS# 3536-09-0)	ESIS 2013
	[2-hydroxy-3-(naphthyloxy)propyl]isopropylammonium chloride (CAS# 318-98-9)	ESIS 2013
	1-naphthalen-1-yloxy-3-(propan-2-ylamino)propan-2 ol;hydrochloride	Pubchem 2013
	(S)-(−)-Propranolol-HCl (S)-[2-hydroxy-3-(naphthyloxy)propyl]isopropylammonium chloride	ESIS 2013
	(2S)-1-naphthalen-1-yloxy-3-(propan-2-ylamino)propan-2-	Pubchem 2013

	ol;hydrochloride		
	(R)-(+)-Propranolol-HCl (R)-[2-hydroxy-3-(naphthy chloride (2R)-1-naphthalen-1-yloxy ol;hydrochloride	ESIS 2013 Pubchem 2013	
	(±)-Propranolol CAS# 525-66-6	iPr NH OH	ESIS 2013
Strukturformel	(S)-(-)-Propranolol CAS# 4199-09-1	iPr NH	ESIS 2013
	(±)-Propranolol-HCl CAS# 318-98-9	O O NH ⁺ V _{iPr}	ESIS 2013

	(±)-Propranolol-HCl CAS# 3506-09-0	iPr NH OH HCI	ESIS 2013
	(S)-(−)-Propranolol-HCl CAS# 4199-10-4		ESIS 2013
	(R)-(+)-Propranolol-HCl CAS# 13071-11-9	OH NH ⁺ ViPr	ESIS 2013
Summenformel	P: C ₁₆ H ₂₁ NO ₂ P-HCI: C ₁₆ H ₂₁ NO ₂ :HCI		EPI Suite 2011
CAS-Nummer	(±)-Propranolol: 525-66-6 (S)-(-)-Propranolol: 4199 (R)-(+)-Propranolol: keine (±)-Propranolol-HCI: 318 (S)-(-)-Propranolol-HCI: (R)-(+)-Propranolol-HCI:	5 9-09-1 e Angaben gefunden -98-9 (protoniert) und 3506-09-0 4199-10-4 13071-11-9	ESIS 2013
EINECS-Nummer	(±)-Propranolol: 208-378 (S)-(-)-Propranolol: 224- (R)-(+)-Propranolol: keine (±)-Propranolol-HCI: 206 222-501-5 (S)-(-)-Propranolol-HCI: (R)-(+)-Propranolol-HCI:	ESIS 2013	

SMILES-code	(±)-P: CC(C)NCC(O)COc1cccc2ccccc12 (±)-P-HCI: CC(C)NCC(O)COc1cccc2ccccc12	EPI Suite 2011
Molekulargewicht (g·mol ⁻¹)	(±)-P: 259.35 (±)-P-HCI: 295.81	EPI Suite 2011
Schmelzpunkt (°C)	(±)-P: 96 (exp); 132.76 (est) (±)-P-HCI: 163-165 (exp); 233.15 (est)	EPI Suite 2011
Siedepunkt (°C)	(±)-P: 386.48 (est, adapted Stein & Brown method) (±)-P-HCI: 544 (est, adapted Stein & Brown method)	EPI Suite 2011
Dampfdruck (Pa)	(±)-P: 1.26 · 10 ⁻⁵ (est, 25°C, modified Grain method) (±)-P-HCI: 4.21 · 10 ⁻¹¹ (est, 25°C, modified Grain method)	EPI Suite 2011
Henry-Konstante (Pa⋅m ³ ⋅mol⁻¹)	(±)-P: $8.09 \cdot 10^{-8}$ (25°C, est, bond method); $1.432 \cdot 10^{-5}$ (est, mit Dampfdruck und Wasserlöslichkeit) (±)-P-HCI: $6.1 \cdot 10^{-15}$ (25°C, est, bond method); $4.142 \cdot 10^{-12}$ (est, mit Dampfdruck und Wasserlöslichkeit)	EPI Suite 2011
	(±)-P-HCI: 7.5 (exp, pH 6.8)	Balon <i>et al.</i> 1999
(g·L ⁻¹)	(±)-P: 0.0617 (exp, 25°C); 0.228 (est, 25°C, mit K _{ow}) (±)-P-HCI: 3.01 (est, 25°C, mit K _{ow})	EPI Suite 2011
Dissoziations- konstante (pKa)	9.14 - 9.54 (exp) und 9.00, 9.14, 9.6 (est)	Aus Literatursuche in Neuwöhner und Escher 2011
	0.78 (exp, geladene Spezies); 3.48 (exp, neutrale Spezies)	Avdeef et al. 1998
n Octanol/Wassor	1.2 (geschätzt mit pH-abhängiger linearer Regression, pH 7.4)	Owen <i>et al.</i> 2009
Verteilungs- koeffizient (log Kow)	3.4 (exp, neutrale Spezies); 0.5 (exp, geladene Spezies); 1.2 (exp, pH 6.8)	Balon <i>et al.</i> 1999
	2.9 (est, neutrale Spezies)	Neuwöhner und Escher 2011
	3.3 (extrapoliert, neutrale Spezies)	Neuwöhner und Escher 2011
	3.06 (extrapoliert, pH 7)	Escher <i>et al</i> 2006
Liposom/Wasser Verteilungs- keefizient (leg Kr.)	4.73 (exp, pH 7)	Betageri und Rogers 1987
KUemzient (IUg Klipw)	3.2 (neutrale Spezies); 2.5 (geladene Spezies); 2.5 (exp, pH 6.8)	Balon <i>et al.</i> 1999
	2.77 (exp, pH 7)	Pauletti und Wunderli- Allensbach 1994
Sediment/Wasser Verteilungs-	P: 2.96 (est, MCI Methode); 2.45 (est, Kow Methode)	EPI Suite 2011
koeffizient (log Koc)	P-HCI: 3.17(est, MCI Methode); 0.94 (est, K _{ow} Methode)	EPI Suite 2011
Hydrolysestabilität	Keine Hydrolyse über 3 Monate	Piram et al. 2008
Photostabilität (Halbwertszeit)	4.4 h (deionisiertes Wasser; $1 - 2 \mu g/L$; 290 – 700 nm; 765 Wm ⁻²) 1.1 h (filtriertes Flusswasser; $1 - 2 \mu g/L$; 290 – 700 nm; 765 Wm ⁻²) 12 - 21 h (deionisiertes Wasser; $1 mg/L - 0.3 \mu g/L$; 290 – 800	Lin und Reinhard 2005 Lin und Reinhard 2005 Liu und Williams

nm)	2007
16.5 h (deionisiertes Wasser; 1 und 10 mg/L; 290 – 800 nm) < 16.5 h (sterilisiertes Flusswasser; 1 und 10 mg/L; 290 – 800 nm)	Liu <i>et al.</i> 2009a Liu <i>et al.</i> 2009a
23 h (deionisiertes Wasser; 1 - 100 μg/L; 295 - 800 nm; ca. 41 Wm ⁻²)	Liu <i>et al.</i> 2009b
7 - 11 h (Flusswasser; 1 - 100 μg/L; 295 - 800 nm; ca. 41 Wm ⁻²)	Liu <i>et al.</i> 2009b
8 h (reines Wasser; 10 μg/L und 10 mg/L; 280 - 600 nm; in Photoreaktor) 2.5 h (Kläranlagenwasser; 10 μg/L und 10 mg/L; > 280 - 600 nm; in Photoreaktor)	Piram <i>et al.</i> 2008 und 2012 Piram <i>et al.</i> 2008 und 2012
1 - 16.8 d (aus in Sonnenlicht experimentell bestimmtem Quantum Yield berechnete Werte für verschiedene Breitengrade und Jahreszeiten)	Andreozzi <i>et al.</i> 2003

2 Allgemeines

- <u>Anwendung:</u> Propranolol ist ein blutdrucksenkender Wirkstoff, der zur Behandlung von Bluthochdruck, bei Angina pectoris, Herzrhythmusstörungen, zur Migräneprophylaxe und bei weiteren Indikationen verwendet wird (PharmaWiki 2013). Es wird als Hydrochlorid in einer razemischen Mischung ((±)-Propranolol, einer 50:50-Mischungsverhältnis von S-(-)- und R-(+)-Propranolol) eingenommen.
- Wirkungsweise: Propranolol ist ein β-Blocker. β-Blocker wirken durch kompetitive Hemmung der β-adrenergischen Rezeptoren, welche für die normale Funktion des sympathischen Teils des autonomen Nervensystems in Vertebraten sorgen (Santos *et al.* 2010). Das adrenergische System ist in der Regulierung der Herztätigkeit, sowie generell in der Erweiterung von Gefässen (Blutgefässen und Bronchien) involviert (Fent *et al.* 2006). Propranolol ist eine chirale Substanz mit enantioselektiver Wirkung. Das S-Enantiomer ist als β-Blocker deutlich potenter als das R-Enantiomer, während das R-Enantiomer Membranstabilisierende Effekte aufzeigt (Stanley und Brooks 2009). Dieser zusätzliche Effekt könnte, neben dem relativ hohen K_{ow}, eine Erklärung für die erhöhte Ökotoxizität im Vergleich zu anderen β-Blockern sein (Fent *et al.* 2006). Als nicht-spezifischer Antagonist blockiert Propranolol β₁- und β₂-Rezeptoren. Fische und andere Vertebraten besitzen β-Rezeptoren im Herz, der Leber und im Fortpflanzungsapparat (Santos *et al.* 2010). In Invertebraten wurden bis jetzt jedoch kein β-Rezeptoren gefunden (Fent *et al.* 2006; Santos *et al.* 2010).

Nachweis- grenze (ng/L)	Bestimmungs- grenze (ng/L)	Methode	Referenz
-	5 - 10	SPE-LC-MS/MS	Alder <i>et al.</i> 2010
0.5	-	SPE-HPLC-MS/MS	Lin und Tsai 2009
10	-	SPE-GC-MS/MS	Ternes 1998
34	103	SPE-HPLC-DAD	Baranowska und Kowalski 2011

 Tabelle 2
 Nachweis- und Bestimmungsgrenzen von Propranolol in Oberflächengewässern.

Stabilität und

Abbauprodukte:

Propranolol zeigt eine hohe Stabilität gegenüber Hydrolyse bei umweltrelevantem pH (Liu und Williams 2007), wird jedoch durch Sonnenlicht schnell abgebaut, da es Wellenlängen über 295 nm absorbiert (Lin und Reinhard 2005; Liu und Williams 2007). Experimentell bestimmte Halbwertszeiten befinden sich zwischen 1.1 h – 23 h, abhängig von Lichtstärke, Propranololkonzentration und Medium (siehe Tabelle 1). Berechnete Halbwertszeiten aus experimentell bestimmtem Quantum Yield (im Sonnenlicht) für verschieden Breitengrade und Jahreszeiten sind deutlich höher mit Werten zwischen 1 und 16.8 Tagen (Andreozzi *et al.* 2003).

Die Resultate von chemisch analysierten Testkonzentrationen von Propranolol unter Testbedingungen sind unterschiedlich (siehe Tabelle A1 im Appendix). In Biotests über 3 Tage mit Algen und über 7 Tage mit Lemna gibba blieben die Testkonzentrationen stabil (Kaza *et al.* 2007, mit Lichtstärke 7'000 lux \approx 125 µmol m⁻² s⁻¹; Liu *et al.* 2009a, 13'000 lux \approx 232 µmol m⁻² s⁻¹)^a. In einer Studie bei vergleichbarer Lichtstärke (120 µmol m⁻² s⁻¹) mit Biofilmen waren die Konzentrationen nach 24 Stunden jedoch um bis zu 42-mal kleiner ist als der Anfangswert (Bonnineau *et al.* 2010). In einem 20-tägigen Fischtest mit 50% Erneuerung der Testkonzentrationen alle 5 Tage waren die durchschnittlichen

^a 1 µmol m⁻² s⁻¹≈ 56 lux (Frequently Asked Questions. <u>FAQ0017-0605</u> OSRAM SYLVANIA. Specialty Applications. How can I evaluate the effect of different light sources on plant growth? <u>http://assets.sylvania.com/assets/documents/FAQ0017-0605.ed512ef3-36b1-47cb-b052-0f9ca74348ca.pdf</u> und QUANTUM Lichtmessgerät. Bedienungsanleitung

http://www.http://www.stepsystems.de/tl_files/stepsystems/Anleitungen/32800%20Quantum%20Meter.pdf.de/tl_files/stepsystems/Anleitungen/32800%20Quantum%20Meter.pdf)

gemessenen Konzentration \geq 40% der Nominalen (Lorenzi *et al.* 2012; keine Angaben über Lichtstärke).

Leider wurden in keinen weiteren Studien eine chemischen Verifizierung der Testkonzentrationen durchgeführt, die einen Vergleich der vorhandenen Konzentration vor und nach einem Test ermöglichen. Resultate für das ähnlich photoinstabile Antibiotikum Ciprofloxacin deuten jedoch darauf hin, dass ihn Fischund Daphnientest die Testkonzentrationen über 48 Stunden stabil sind. Für die Validität einer Studie wird daher nur für Tests mit Primärproduzenten eine chemische Analyse als zwingend angesehen (Code A oder B in Kolonne "Chemische Analyse" in Tabelle 4). Für andere Organismengruppen ist dies erst ab einer Expositionsdauer von über 96 Stunden notwendig (mit Berücksichtigung von Erneuerungen der Testkonzentrationen).

Die Stabilität der Testsubstanz ist nur ein Einflussfaktor auf die tatsächliche Testkonzentration, wenn auch ein sehr wichtiger. Andere Einflussfaktoren sind die Löslichkeit der Testsubstanz im Testmedium und das korrekte Einwiegen der Testsubstanz. Während sich die Löslichkeit anhand der Wasserlöslichkeit und den eingesetzten Testkonzentrationen plausibilisieren lässt, kann es beim Einwiegen zu nicht systematischen Unterschieden kommen, die anhand der Angaben im jeweiligen Testbericht nicht ersichtlich sind. Daher werden alle Effektwerte, die auf nominalen Konzentrationen beruhen, gekennzeichnet. Bei deutlichen Unterschieden (Unterschied grösser als Faktor 10) zwischen Toxizitätswerten, die auf nominalen Konzentrationen beruhen, und analytisch validierten Werten, sollen daher die analytisch validierten bevorzugt werden.

Die photolytischen Abbauprodukte von Propranolol scheinen alle eine geringere Toxizität aufzuweisen als die Ursprungssubstanz (Liu *et al.* 2009a).

Existierende

Grenzwerte:

Es wurden keine Grenzwerte für Propranolol in Oberflächengewässern gefunden (CA, CZ, DE, FI, FR, NL, UK, SE, SL).

3 Effektdatensammlung

Es wurden Effektdaten zum razemischen Gemisch von Propranolol, zu den zwei Enantiomeren sowie zu den jeweiligen Hydrochloriden gefunden. Resultate aus Tests mit Enantiomeren wurden nicht für die EQS-Ableitung verwendet. Effektwerte aus Tests mit Propranolol-Hydrochlorid wurden auf Propranolol umgerechnet. Es sind Effektdaten aus Einzelspeziesstudien mit Bakterien, Cyanobakterien, Protozoen, Algen, höheren Wasserpflanzen, Rädertierchen, Krebstieren, Mollusken und Fischen vorhanden (Tabelle 3). Zusätzlich wurde je eine Mikrokosmosstudie mit limnischen, bzw. marinen Lebensgemeinschaften von Mikroorganismen gefunden.

Tabelle 3 Effektdatensammlung für Propranolol (razemisches Gemisch, einige Effektdaten basieren jedoch auf dem R- oder S-Enantiomer, siehe Spalte "Bemerkungen"). Eine Bewertung der Validität wurde nach den Klimisch-Kriterien (Klimisch *et al.* 1997) durchgeführt. Literaturdaten, die in grau dargestellt werden, erfüllen nicht die Datenanforderungen nach dem TGD for EQS, sollen aber als zusätzliche Information genannt werden. ">-, >- und <"-Werte, auch wenn sie valide sind, können nicht direkt zur EQS-Ableitung verwendet werden und sind ebenfalls in grau dargestellt. Der Endpunkt Wachstumsrate wurde gemäss TGD for EQS dem Endpunkt Biomasse für Algen vorgezogen und Letzterer grau dargestellt, falls für eine Art beide Endpunkte vorhanden sind. Effektwerte wurden in folgenden Fällen auf Propranolol umgerechnet: (i) wenn Effektwert in M angegeben ist^a (ii) wenn Effektwert auf nominalen Testkonzentrationen mit Propranolol-Hydrochlorid beruht^b. Generell wurde angenommen, dass das Hydrochlorid verwendet wurde, wenn nicht explizit mit CAS-Nummer oder anderen eindeutigen Angaben eine genaue Identifikation möglich war. Falls bekannt, werden die Lebensstadien der Testorganismen hinter dem Namen angegeben. Weiter werden, falls vorhanden, Angaben zum Testsystem, zur chemischen Analytik und Reinheit, sowie zur Salinität bei Tests mit marinen Organismen gemacht. **analyt.** = analytische Reinheit; **kA** = keine Angaben; **Form.** = Formulierung; **TK** = Testkonzentration; >< = Effektwert liegt zwischen den angegebenen Werten

EFFEKTDATENSAMMLUNG														
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Chemische Analyse ^c	Testsystem ^d	Reinheit (%)/ Salinität (‰)	Bemerkungen	Validität	Referenz	
akute Daten limnisch														
Cyanobakterien	Synechococcus leopoliensis	Wachstum (Zellzahl oder optische Dichte)	96	h	EC50 ^b	=	586	С	S	> 97		3	Ferrari et al. 2004	
Protozoen	Spirostomum ambiguum	Mortalität	24	h	LC50 ^b	=	1'950	с	s	kA	Spirotoxtest (ohne Licht)	2	Nalecz-Jawecki et al. 2008	
Protozoen	Spirostomum ambiguum	Mortalität	24	h	LC50 ^b	=	2'600	с	s	kA	Spirotoxtest (ohne Licht)	2	Nalecz-Jawecki und Sawicki 2003; Nalecz-Jawecki 2004	
							2'252				Geometrischer Mittelwert			
Protozoen	Spirostomum ambiguum	Morphologische Veränderungen	24	h	EC50 ^b	=	1'550	С	S	kA	Spirotoxtest (ohne Licht)	2	Nalecz-Jawecki et al. 2008	
Protozoen	Spirostomum ambiguum	Morphologische Veränderungen	24	h	EC50 ^b	=	2'330	С	s	kA	Spirotoxtest (ohne Licht)	2	Nalecz-Jawecki und Sawicki 2003; Nalecz-Jawecki 2004	
Protozoen	Spirostomum ambiguum	Morphologische Veränderungen	24	h	NOEC ^b	=	540	С	S	kA	Spirotoxtest (ohne Licht)	2	Nalecz-Jawecki et al. 2008	
Protozoen	Tetrahymena pyriformis	Biomasse (Zellzahl)	24	h	EC50 ^a	=	4'230	с	S	kA		2	Láng and Kohidai 2012	

	EFFEKTDATENSAMMLUNG													
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Chemische Analvse ^c	Testsystem ^d	Reinheit (%)/ Salinität (‰)	Bemerkungen	Validität	Referenz	
Protozoen	Tetrahymena pyriformis	Nahrungsaufnahme (Optische Dichte)	24	h	EC50 ^b	=	101'732	С	s	> 95	Prototoxkit F (ohne Licht)	2	Nalecz-Jawecki und Sawicki 2003	
Protozoen	Tetrahymena pyriformis	Biomasse (Zellzahl)	24	h	NOEC ^a	×	26; 260	С	s	kA		2	Láng and Kohidai 2012	
Algen	Cyclotella meneghiniana	Wachstum (Zellzahl oder optische Dichte)	96	h	EC50 ^b	=	214	С	s	> 97		3	Ferrari et al. 2004	
Algen	Desmodesmus subspicatus	Wachstumsrate (Chlorophyllfluoreszenz)	72	h	EC50 ^b	=	5'100	С	s	analyt.	nach EC Algentestrichtlinie (L 383A)	3	Cleuvers 2003	
Algen	Desmodesmus subspicatus	kA	72	h	EC50 ^b	=	4'600	С	s	kA	nach EC Algentestrichtlinie (L 383A)	3	Cleuvers 2002	
Algen	Desmodesmus subspicatus	Photosyntheseinhibition (Quantum Yield)	24	h	EC50 ^a	=	3'580	С	s	> 98		3	Escher et al. 2006	
Algen	Desmodesmus subspicatus	Wachstumsrate (Chlorophyllfluoreszenz)	72	h	EC50 ^b	=	610	С	S	analyt.	nach EC Algentestrichtlinie (L 383A)	3	Cleuvers 2005	
Algen	Desmodesmus subspicatus	Photosyntheseinhibition (Quantum Yield)	24	h	EC50 ^a	=	640	С	S	> 98	2.5 vol% Lösungsmittel	3	Escher et al. 2005	
Algen	Pseudokirchneriella subcapitata	Wachstum (Zellzahl oder optische Dichte)	96	h	EC50 ^b	=	6'490	С	S	> 97		3	Ferrari et al. 2004	
Algen	Pseudokirchneriella subcapitata	Biomasse (Fluoreszenz)	72	h	EC50 ^a	=	675	в	S	99.8		3	Liu e <i>t al.</i> 2009a	
Algen	Scenedesmus vacuolatus	Wachstumsrate (Optische Dichte)	24	h	EC50 ^a	=	10'600	С	S	> 98	pH = 7.7	3	Neuwöhner und Escher 2011	
Algen	Scenedesmus vacuolatus	Wachstumsrate (Optische Dichte)	24	h	EC50 ^a	=	20'700	С	S	> 98	pH = 6.8	3	Neuwöhner und Escher 2011	
Höhere Wasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	7	d	EC50 ^b	=	18'600	в	s	kA	nach ISO 20079	2	Kaza et al. 2007	
Höhere Wasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	7	d	EC50 ^b	=	99,000	С	S	analyt.	nach ISO 20079	3	Cleuvers 2005	
Höhere Wasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	7	d	EC50 ^b	=	100'000	С	S	analyt.	nach ISO 20079	3	Cleuvers 2003	
Rädertierchen	Brachionus calyciflorus	Immobilisierung	24	h	EC50 ^b	=	1'890	с	s	> 95	Rotoxkit F (ohne Licht)	2	Nalecz-Jawecki et al. 2011	
Rädertierchen	Brachionus calyciflorus	Immobilisierung	24	h	EC50 ^a	=	2'600	с	s	> 97	mit Rotoxkit F (ohne Licht)	2	Calleja e <i>t al.</i> 1994	
							2'220				Geometrischer Mittelwert			
Rädertierchen	Brachionus calyciflorus	Immobilisierung	24	h	EC20 ^b	=	1'030	С	s	> 95	Rotoxkit (ohne Licht)	2	Nalecz-Jawecki et al. 2011	
Rädertierchen	Brachionus calyciflorus	Nahrungsaufnahme	1	h	EC50 ^b	=	3'400	С	s	> 95		2	Nalecz-Jawecki et al. 2011	
Rädertierchen	Brachionus calyciflorus	Nahrungsaufnahme	1	h	EC20 ^b	=	2'420	С	S	> 95		2	Nalecz-Jawecki et al. 2011	
Rädertierchen	Brachionus plicatilis	Narkose	10	min	EC50 ^b	=	100	С	S	analyt.	nur 3 TK	3	Nogrady und Rowe 1993	
Krebstiere	Ceriodaphnia dubia (< 24 h)	Immobilisierung	48	h	EC50 ^a	=	1'430	с	s	kA	ohne Licht; nach US EPA 600/4-90/027	2	Fraysse und Garric 2005	
Krebstiere	Ceriodaphnia dubia (< 24 h)	Immobilisierung	48	h	EC50 ^b	=	1'320	с	s	> 97	nach US EPA/600/4-90/027	2	Ferrari e <i>t al.</i> 2004	
							1370				Geometrischer Mittelwert			
Krebstiere	Ceriodaphnia dubia (24 h)	Immobilisierung	48	h	EC50	=	700	С	R	kA	nach US EPA/600/4-90/027	3	Huggett et al. 2002	
Krebstiere	Daphnia magna (< 24 h)	Immobilisierung	48	h	EC50	=	1'670	с	s	kA		2	Stanley et al. 2006	

	EFFEKTDATENSAMMLUNG													
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Chemische Analvse ^c	Testsystem ^d	Reinheit (%)/ Salinität (‰)	Bemerkungen	Validität	Referenz	
Krebstiere	Daphnia magna (< 24 h)	Immobilisierung	48	h	EC50 ^b	=	2'410	с	s	> 97	nach AFNOR T90-301	2	Ferrari <i>et al.</i> 2004	
							2'010				Geometrischer Mittelwert			
Krebstiere	Daphnia magna (24 h)	Immobilisierung	48	h	EC50 ^b	=	1'400	С	R	kA	nach US EPA/600/4-90/027	3	Huggett et al. 2002	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Immobilisierung	48	h	EC50 ^b	=	6'600	С	S	kA	nach EC Daphnientestrichtlinie (L 383A)	3	Cleuvers 2002	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Immobilisierung	48	h	EC50 ^b	=	6'600	С	S	analyt.	nach EC Daphnientestrichtlinie (L 383A)	3	Cleuvers 2003	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Immobilisierung	48	h	EC50 ^b	=	6'800	С	S	analyt.	nach EC Daphnientestrichtlinie (L 383A)	3	Cleuvers 2005	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Immobilisierung	48	h	EC50	=	1'400	С	S	kA	S-(-)-Propranolol-HCI	2	Stanley et al. 2006	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Immobilisierung	48	h	EC50	=	1'570	С	S	kA	R-(+)-Propranolol-HCl	2	Stanley et al. 2006	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Immobilisierung	24	h	EC50 ^a	=	2'370	С	S	> 95	Testdauer zu kurz	2	Lilius et al. 1994	
Krebstiere	Daphnia magna	Immobilisierung	24	h	EC50 ^a	=	15'600	С	S	> 97	nach OECD 202; Testdauer zu kurz	2	Calleja e <i>t al.</i> 1994	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Immobilisierung	48	h	EC10 ^b	=	2'600	С	S	kA	nach EC Daphnientestrichtlinie (L 383A)	3	Cleuvers 2002	
Krebstiere	Daphnia magna (4 d)	Herzfrequenz	30	min	NOEC ^b	VI	702	С	R	≥ 99		2	Dzialowski <i>et al.</i> 2006	
Krebstiere	Daphnia pulex (< 24 h)	Immobilisierung	24	h	EC50 ^a	=	3'362	С	S	> 95	Testdauer zu kurz	2	Lilius et al. 1995	
Krebstiere	<i>Hyalella azteca</i> (14 d)	Immobilisierung	48	h	EC50 ^b	=	26'100	С	R	kA		3	Huggett e <i>t al.</i> 2002	
Krebstiere	Streptocephalus proboscideus	Mortalität	24	h	LC50 ^a	=	1'840	С	s	> 97	R-(+)-Propranolol; mit Streptoxkit F	2	Calleja e <i>t al.</i> 1994	
Krebstiere	Thamnocephalus platyurus	Immobilisierung	24	h	EC50 ^b	=	2'840	с	s	> 95	Thamnotoxkit F (ohne Licht)	2	Nalecz-Jawecki et al. 2011	
Krebstiere	Thamnocephalus platyurus	Immobilisierung	24	h	EC50 ^b	=	3'030	с	s	> 95	Thamnotoxkit F (ohne Licht)	2	Nalecz-Nawecki und Persoonen 2006	
Krebstiere	Thamnocephalus platyurus	Immobilisierung	24	h	EC50 ^b	=	3'390	с	s	kA	Thamnotoxkit F (ohne Licht)	2	Nalecz-Jawecki et al. 2008	
							3'080				Geometrischer Mittelwert			
Krebstiere	Thamnocephalus platyurus (< 24 h)	Immobilisierung	24	h	EC50 ^b	=	9'040	С	S	>98	0.1 vol% Lösungsmittel; Thamnotoxkit F (ohne Licht)	3	Kim et al. 2007	
Krebstiere	Thamnocephalus platyurus	Immobilisierung	24	h	EC20 ^b	=	1'470	С	S	> 95	Thamnotoxkit F (ohne Licht)	2	Nalecz-Jawecki et al. 2011	
Krebstiere	Thamnocephalus platyurus	Immobilisierung	24	h	NOEC ^b	=	1'100	С	S	kA	Thamnotoxkit F (ohne Licht)	2	Nalecz-Jawecki et al. 2008	
Krebstiere	Thamnocephalus platyurus	Nahrungsaufnahme	1	h	EC50 ^b	=	4'800	С	S	> 95		2	Nalecz-Jawecki et al. 2011	
Krebstiere	Thamnocephalus platyurus	Nahrungsaufnahme	1	h	EC50 ^b	=	11'400	С	S	> 95		2	Nalecz-Nawecki und Persoonen 2006	
Krebstiere	Thamnocephalus platyurus	Nahrungsaufnahme	1	h	EC20 ^b	=	2'480	С	S	> 95		2	Nalecz-Jawecki et al. 2011	
Fische	Danio rerio (befruchtete Eier)	Mortalität	80	h	NOEC ^a	=	14'000	С	R	kA		2	Fraysse et al. 2006	
Fische	Danio rerio (befruchtete Eier)	Schlupfrate	80	h	NOEC ^a	=	14'000	С	R	kA		2	Fraysse et al. 2006	

	EFFEKTDATENSAMMLUNG													
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Chemische Analvee ^c	Testsystem ^d	Reinheit (%)/ Salinität (‰)	Bemerkungen	Validität	Referenz	
Fische	Danio rerio (befruchtete Eier)	Herzbeutelfläche	80	h	NOEC ^a	<	3'500	С	R	kA		2	Fraysse <i>et al.</i> 2006	
Fische	Danio rerio (befruchtete Eier)	Schwanzdeformation	80	h	NOEC ^a	=	7'000	С	R	kA		2	Fraysse <i>et al.</i> 2006	
Fische	Danio rerio (befruchtete Eier)	Schwanzlänge	80	h	NOEC ^a	=	7'000	С	R	kA		2	Fraysse et al. 2006	
Fische	Danio rerio (befruchtete Eier)	Blutzirkulation im Schwanz	48	h	NOEC ^a	=	14'000	С	R	kA		2	Fraysse et al. 2006	
Fische	Danio rerio (befruchtete Eier)	Ödeme	48	h	NOEC ^a	=	14'000	С	R	kA		2	Fraysse et al. 2006	
Fische	Danio rerio (befruchtete Eier)	Spontane Bewegungen	24	h	NOEC ^a	١٧	3'500	С	R	kA		2	Fraysse et al. 2006	
Fische	Danio rerio (befruchtete Eier)	Herzfrequenz	64	h	NOEC ^b	\geq	7	С	R	98		2	Finn et al. 2012	
Fische	Danio rerio (befruchtete Eier)	Herzfrequenz	48	h	NOEC ^a	=	3'500	С	R	kA		2	Fraysse et al. 2006	
Fische	Oncorhynchus mykiss (iuvenil)	CYP1A-Aktivität in Leberzellen	96	h	NOEC	\geq	1'120	А	F	99	EROD Assay; widersprüchliche Angaben zu Anzahl Fische in Aguarien	3	Bartram et al. 2011	
Fische	Oncorhynchus mykiss (juvenil)	CYP1A-Aktivität in Kiemenzellen	96	h	NOEC	<	1'120	А	F	99	EROD Assay; widersprüchliche Angaben zu Anzahl Fische in Aquarien	3	Bartram et al. 2011	
Fische	Oncorhynchus mykiss (adult)	Herzfrequenz	48	h	NOEC	\geq	70	А	F	kA		3	Larsson <i>et al.</i> 2006	
Fische	Oryzias latipes (befruchtete Eier)	Herzfrequenz	7	d	NOEC ^b	\geq	7	С	R	98		3	Finn et al. 2012	
Fische	Oryzias latipes (< 24 h)	Mortalität	96	h	LC50 ^b	=	10'000	С	S	>98	0.1 vol% Lösungsmittel	3	Kim et al. 2009	
Fische	Oryzias latipes (3 d)	Mortalität	48	h	LC50 ^b	=	21'300	С	R	kA		3	Huggett et al. 2002	
Fische	Pimephales promelas (8 d)	Mortalität	48	h	LC50	=	1'210	с	s	kA		2	Stanley et al. 2006	
Fische	Pimephales promelas (8 d)	Mortalität	48	h	LC50	=	1'420	С	S	kA	S-(-)-Propranolol-HCI	2	Stanley et al. 2006	
Fische	Pimephales promelas (8 d)	Mortalität	48	h	LC50	=	1'690	С	S	kA	R-(+)-Propranolol-HCI	2	Stanley et al. 2006	
					akut	e Da	aten mari	n						
Bakterien	Aliivibrio fischeri	Lumineszenzhemmung	30	min	EC50 ^b	=	53'000	с	s	> 97	mit Microtox	2	Ferrari et al. 2004	
Bakterien	Aliivibrio fischeri	Lumineszenzhemmung	30	min	EC50 ^a	=	71'400	С	S	> 99	2.5 vol% Lösungsmittel; nach ISO 11348-3	3	Escher et al. 2005	
Bakterien	Photobacterium phosphoreum	Lumineszenzhemmung	15	min	EC50 ^a	=	183'000	с	s	> 97	mit Microtoxkit	2	Calleja e <i>t al.</i> 1994	
Krebstiere	Artemia franciscana	Mortalität	24	h	LC50 ^a	=	400'000	с	s	> 97	mit Artoxkit M	2	Calleja e <i>t al.</i> 1994	
Krebstiere	Gammarus sp. (adult)	Mortalität	9	d	NOEC ^b	\geq	4385	С	S	kA/6		3	Wiklund et al. 2011	
Krebstiere	Gammarus sp. (adult)	Respiration	9	d	NOEC ^b	2	4385	С	S	kA/6		3	Wiklund et al. 2011	
Krebstiere	Gammarus sp. (adult)	Schwimmaktivität	7	d	NOEC ^b	<	88	С	S	kA/6		3	Wiklund et al. 2011	
Krebstiere	Gammarus sp. (adult)	Zeit bis Habitat gefunden	7	d	NOEC ^b	><	88; 877	С	S	kA/6		3	Wiklund et al. 2011	
Krebstiere	Gammarus sp. (adult)	Feinderkennung	7	d	NOEC ^b	\geq	4385	С	S	kA/6		3	Wiklund et al. 2011	

	EFFEKTDATENSAMMLUNG													
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Chemische	Testsystem ^d	Reinheit (%)/ Salinität (‰)	Bemerkungen	Validität	Referenz	
Krebstiere	Gammarus sp. (adult)	Fressrate	6	d	NOEC ^b	≥	4385	С	S	kA/6		3	Wiklund et al. 2011	
			chroi	nische	e und sı	ıbch	ronische	Dat	en lim	nisch				
Cyanobakterien	Synechococcus leopoliensis	Wachstum (Zellzahl oder optische Dichte)	96	h	NOEC ^b	=	310	С	S	> 97		3	Ferrari et al. 2004	
Algen	Cyclotella meneghiniana	Wachstum (Zellzahl oder optische Dichte)	96	h	NOEC ^b	=	82	С	S	> 97		3	Ferrari et al. 2004	
Algen	Desmodesmus subspicatus	kA	72	h	EC10	=	610	С	S	kA	nach EC Algentestrichtlinie (L 383A)	3	Cleuvers 2002	
Algen	Pseudokirchneriella subcapitata	Wachstum (Zellzahl oder optische Dichte)	96	h	NOEC ^b	=	4'400	С	S	> 97		3	Ferrari et al. 2004	
Algen	Pseudokirchneriella subcapitata	Biomasse (Fluoreszenz)	72	h	NOEC ^b	<	1'220	в	S	99.8		3	Liu e <i>t al.</i> 2009a	
Rädertierchen	Brachionus calyciflorus	Reproduktion	48	h	NOEC ^b	=	160	с	s	> 97	mit Rotoxkit (ohne Licht)	2	Ferrari e <i>t al.</i> 2004	
Rädertierchen	Brachionus calyciflorus	Reproduktion	48	h	NOEC ^b	=	880	В	S	99.8		3	Liu e <i>t al.</i> 2009a	
Rädertierchen	Brachionus calyciflorus	Reproduktion	48	h	EC50 ^b	=	1'950	в	s	99.8		3	Liu e <i>t al.</i> 2009a	
Krebstiere	Ceriodaphnia dubia (< 24 h)	Reproduktion	7	d	NOEC ^b	=	8	с	R	> 97	AFNOR T90-376	2	Ferrari et al. 2004	
Krebstiere	Ceriodaphnia dubia (24 h)	Reproduktion	7	d	NOEC ^b	=	110	С	R	kA	US EPA/600/4-90/027	3	Huggett et al. 2002	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Immobilisierung	21	d	NOEC	=	400	с	R	kA		2	Stanley et al. 2006	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Reproduktion	21	d	NOEC	=	400	с	R	kA		2	Stanley et al. 2006	
Krebstiere	Daphnia magna (< 24 h)	Reproduktion	9	d	LOEC ^b	=	100	С	R	≥ 99	sign. Effekt bei 100, 390 und 770 μg/L, kein sign. Effekt bei 48 und 190 μg/L	3	Dzialowski <i>et al.</i> 2006	
Krebstiere	Daphnia magna (< 24 h)	Trockengewicht	9	d	NOEC ^b	=	190	с	R	≥ 99		2	Dzialowski <i>et al.</i> 2006	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Herzfrequenz	9	d	NOEC ^b	۷	48	С	R	≥ 99		2	Dzialowski <i>et al.</i> 2006	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Mortalität	9	d	NOEC ^b	N	880	С	R	≥ 99		2	Dzialowski <i>et al.</i> 2006	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Reproduktion	21	d	NOEC	=	409	С	R	kA	S-(-)-Propranolol-HCI	2	Stanley et al. 2006	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Immobilisierung	21	d	NOEC	N	869	С	R	kA	S-(-)-Propranolol-HCI	2	Stanley et al. 2006	
Krebstiere	Daphnia magna (5 d)	Herzfrequenz	30	min	NOEC	=	1'485	С	R	kA	S-(-)-Propranolol-HCI	2	Stanley et al. 2006	
Krebstiere	<i>Daphnia magna</i> (< 24 h)	Immobilisierung	21	d	NOEC	=	200	С	R	kA	R-(+)-Propranolol-HCI	2	Stanley et al. 2006	
Krebstiere	Daphnia magna (< 24 h)	Reproduktion	21	d	NOEC	=	409	С	R	kA	R-(+)-Propranolol-HCI	2	Stanley et al. 2006	
Krebstiere	Daphnia magna (5 d)	Herzfrequenz	30	min	NOEC	=	1'485	С	R	kA	R-(+)-Propranolol-HCI	2	Stanley et al. 2006	
Krebstiere	Hyalella azteca (7 d)	Reproduktion	27	d	NOEC ^b	><	0.9; 88	С	R	kA		3	Huggett et al. 2002	
Krebstiere	<i>Hyalella azteca</i> (7 d)	Länge	27	d	NOEC ^b	≥	440	С	R	kA		3	Huggett et al. 2002	
Fische	Danio rerio (befruchtete Eier)	Mortalität	10	d	NOEC ^b	=	1'800	с	R	> 97	nach ISO 12890; subchronischer Endpunkt	2	Ferrari e <i>t al.</i> 2004	

EFFEKTDATENSAMMLUNG													
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Chemische	Testsystem ^d	Reinheit (%)/ Salinität (‰)	Bemerkungen	Validität	Referenz
Fische	Danio rerio (befruchtete Eier)	Herzfrequenz	64	h	NOEC ^b	<	0.08	С	R	98	Eltern 24 h pre-exponiert	2	Finn e <i>t al.</i> 2012
Fische	Oncorhynchus mykiss (juvenil)	Mortalität	40	d	NOEC	≥	8'700	А	F	kA		2	Owen et al. 2009
Fische	Oncorhynchus mykiss (juvenil)	Wachstum (Länge)	40	d	NOEC	><	1000; 8'700	А	F	kA		2	Owen et al. 2009
Fische	Oncorhynchus mykiss (juvenil)	Wachstumsrate (Gewicht)	40	d	NOEC	><	1000; 8'700	А	F	kA		2	Owen et al. 2009
Fische	Oncorhynchus mykiss (iuvenil)	Fulton's Condition	40	d	NOEC	><	1000; 8'700	А	F	kA	Integrierender Endpunkt für Fitness	2	Owen et al. 2009
Fische	Oryzias latipes (befruchtete Eier)	Herzfrequenz	7	d	NOEC ^b	<	0.08	С	R	98	Eltern 24 h pre-exponiert	2	Finn e <i>t al.</i> 2012
Fische	Oryzias latipes (adult)	Trockengewicht	14	d	NOEC ^b	><	88; 440	в	R	kA	TK nur zu Beginn gemessen	3	Huggett et al. 2002
Fische	Oryzias latipes (adult)	Reproduktion (Totale Anzahl Eier/Brutpaar)	14	d	NOEC ^b	≥	440	в	R	kA	TK nur zu Beginn gemessen	3	Huggett et al. 2002
Fische	Oryzias latipes (adult)	Reproduktion (Totale Anzahl Eier/Brutpaar)	28	d	LOEC ^b	VI	0.4	в	R	kA	Inverse Dosis-Wirkungskurve (sign. Effekte bei 0.4 und 0.9 µg/L, keine bei 44 und 88 µg/L; TK nur zu Beginn gemessen	3	Huggett et al. 2002
Fische	Oryzias latipes (adult)	Schlupfrate	14	d	NOEC ^b	\geq	440	в	R	kA	TK nur zu Beginn gemessen	3	Huggett et al. 2002
Fische	Oryzias latipes (adult)	Schlupfrate	28	d	LOEC ^b	</td <td>0.4</td> <td>в</td> <td>R</td> <td>kA</td> <td>sign. Effekte bei 0.4, 0.9 und 88 μg/L , keiner bei 44 μg/L; TK nur zu Beginn gemessen</td> <td>3</td> <td>Huggett et al. 2002</td>	0.4	в	R	kA	sign. Effekte bei 0.4, 0.9 und 88 μg/L , keiner bei 44 μg/L; TK nur zu Beginn gemessen	3	Huggett et al. 2002
Fische	Pimephales promelas (adult)	Reproduktion (Totale Anzahl Eier/Weibchen)	21	d	NOEC ^b	×	88; 1'070	А	F	99	Abstände der TK zu gross	3	Giltrow et al. 2009
Fische	Pimephales promelas (adult)	Reproduktion (Fertilisationsrate)	21	d	NOEC	≥	4	А	R	kA		3	Lorenzi et al. 2012
Fische	Pimephales promelas (adult)	Reproduktion (Anteil geschlüpfter Larven bei 1. Schlupfzeit)	21	d	NOEC	2	4	А	R	kA		3	Lorenzi e <i>t al.</i> 2012
Fische	Pimephales promelas (adult)	Reproduktion (Zeit, bis alle Larven geschlüpft sind)	21	d	NOEC	\geq	4	А	R	kA		3	Lorenzi et al. 2012
Fische	Pimephales promelas (adult)	Reproduktion (Anzahl Eier/Brut)	21	d	NOEC	≥	4	А	R	kA		3	Lorenzi et al. 2012
Fische	Pimephales promelas (adult)	Reproduktion (Anzahl Bruten/Tag)	21	d	NOEC	≥	4	А	R	kA		3	Lorenzi et al. 2012
Fische	Pimephales promelas (adult)	Reproduktion (Anzahl Eier/Tag)	21	d	NOEC	≥	4	А	R	kA		3	Lorenzi et al. 2012
Fische	Pimephales promelas (adult)	Nassgewicht (Männchen)	21	d	NOEC ^b	><	88; 1'070	А	F	99	Abstände der TK zu gross	3	Giltrow et al. 2009
Fische	Pimephales promelas (adult)	Schlupfzeit	21	d	NOEC ^b	><	6.8; 88	А	F	99		2	Giltrow et al. 2009
Fische	Pimephales promelas (adult)	Gonadosomatischer Index (GSI, Männchen)	21	d	LOEC ^b	=	6.8	А	F	99	keine sign. Effekte bei 1.1, 88 und 1070 μg/L	2	Giltrow et al. 2009
Fische	Pimephales promelas (adult)	Mortalität (Männchen)	21	d	NOEC ^b	=	1'070	А	F	99		2	Giltrow et al. 2009
Fische	Pimephales promelas (adult)	Totale Anzahl Nestbesuche (Männchen)	21	d	LOEC	N	0.05	A	R	kA	sign. Effekte bei 0.05 und 0.9 μg/L, kein sign. Effekt bei der höchsten TK (4 μg/L)	3	Lorenzi et al. 2012
Fische	Pimephales promelas (adult)	Annäherung and Weibchen (Männchen)	21	d	NOEC	≥	4	А	R	kA		3	Lorenzi et al. 2012
Fische	Pimephales promelas (adult)	Aufenthaltszeit in Nest (Männchen)	21	d	NOEC	≥	4	А	R	kA		3	Lorenzi et al. 2012

	EFFEKTDATENSAMMLUNG												
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Chemische	Testsystem ^d	Reinheit (%)/ Salinität (‰)	Bemerkungen	Validität	Referenz
Fische	Pimephales promelas (adult)	Anzahl Reibung an Nest (Männchen)	21	d	NOEC	≥	4	А	R	kA		3	Lorenzi et al. 2012
Fische	Pimephales promelas (adult)	Totale Zeit Reibung an Nest (Männchen)	21	d	NOEC	≥	4	А	R	kA		3	Lorenzi et al. 2012
Fische	Pimephales promelas (8 d)	Trockengewicht	7	d	NOEC	<	128	С	R	kA		2	Stanley et al. 2006
Fische	Pimephales promelas (8 d)	Mortalität	7	d	NOEC	=	440	с	R	kA	subchronischer Endpunkt	2	Stanley et al. 2006
Fische	Pimephales promelas (8 d)	Trockengewicht	7	d	NOEC	N	464	С	R	kA	R-(+)-Propranolol-HCI	2	Stanley et al. 2006
Fische	Pimephales promelas (8 d)	Mortalität	7	d	NOEC	=	440	С	R	kA	R-(+)-Propranolol-HCl	2	Stanley et al. 2006
Fische	Pimephales promelas (8 d)	Mortalität	7	d	NOEC	=	440	С	R	kA	S-(-)-Propranolol-HCI	2	Stanley et al. 2006
chronische und subchronische Daten marin													
Höhere Wasserpflanzen	Fucus vesiculosus	Produktions/Respirations- Verhältnis	60	d	NOEC	×	87; 880	С	R	> 99/61		3	Oskarsson et al. 2012
Höhere Wasserpflanzen	Fucus vesiculosus	Chlorophyllfluoreszenz (Quantum Yield)	60	d	NOEC	×	87; 880	С	R	> 99/61		3	Oskarsson et al. 2012
Höhere Wasserpflanze	Fucus vesiculosus	Chlorophyllfluoreszenz (Quantum Yield)	7	d	NOEC ^b	×	880; 4400	С	s	kA/6		3	Wiklund et al. 2011
Höhere Wasserpflanze	Fucus vesiculosus	Respiration	7	d	NOEC ^b	×	880; 4400	С	s	kA/6		3	Wiklund et al. 2011
Höhere Wasserpflanze	Fucus vesiculosus	Bruttoprimärproduktion	7	d	NOEC ^b	~	880; 4400	С	S	kA/6		3	Wiklund et al. 2011
Krebstiere	Gammarus sp. (adult)	Respiration	30	d	NOEC ^b	×	9; 87	С	R	> 99/61		3	Oskarsson et al. 2012
Krebstiere	Gammarus sp. (adult)	Respiration	60	d	NOEC ^b	IV	880	С	R	> 99/61		3	Oskarsson et al. 2012
Krebstiere	Gammarus sp. (adult)	Ammoniumexkretion	30	d	NOEC ^b	×	9; 87	С	R	> 99/61		3	Oskarsson et al. 2012
Krebstiere	Gammarus sp. (adult)	Mortalität	60	d	NOEC ^b	IV	880	С	R	> 99/61		3	Oskarsson et al. 2012
Mollusken	Mytilus edulis trossulus (adult)	Byssusstärke	21	d	NOEC ^b	~	88; 8'800	С	R	≥ 99/ 66	Abstände der TK zu gross	2	Ericson <i>et al.</i> 2010
Mollusken	Mytilus edulis trossulus (adult)	Byssusstärke	8	d	NOEC ^b	×	88; 8'800	С	R	≥ 99/ 66	Abstände der TK zu gross	2	Ericson et al. 2010
Mollusken	Mytilus edulis trossulus (adult)	Byssusabundanz	21	d	NOEC ^b	~	88; 8'800	С	R	≥ 99/ 66	Abstände der TK zu gross	2	Ericson <i>et al.</i> 2010
Mollusken	Mytilus edulis trossulus (adult)	Byssusabundanz	8	d	NOEC ^b	^	8'800	С	R	≥ 99/ 66		2	Ericson <i>et al.</i> 2010
Mollusken	Mytilus edulis trossulus (adult)	Nahrungsaufnahme	14	d	NOEC ^b	V	880	С	R	≥ 99/ 66		2	Ericson et al. 2010
Mollusken	Mytilus edulis trossulus (adult)	Respiration	14	d	NOEC ^b	V	880	С	R	≥ 99/ 66		2	Ericson et al. 2010
Mollusken	Mytilus edulis trossulus (adult)	Nahrungsabsorption (Kotgewicht)	14	d	NOEC ^b	^	880	С	R	≥ 99/ 66		2	Ericson <i>et al.</i> 2010
Mollusken	<i>Mytilus edulis trossulus</i> (adult)	Nahrungsaufnahme	19	d	NOEC ^b	>	4'400	С	R	≥ 99/ 66		2	Ericson <i>et al.</i> 2010
Mollusken	<i>Mytilus edulis trossulus</i> (adult)	Respiration	19	d	NOEC ^b	><	880; 4400	С	R	≥ 99/ 66		2	Ericson <i>et al.</i> 2010
Mollusken	Mytilus edulis trossulus (adult)	Nahrungsabsorption (Kotgewicht)	19	d	NOEC ^b	><	88; 880	С	R	≥ 99/ 66		2	Ericson et al. 2010

	EFFEKTDATENSAMMLUNG												
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (μg/L)	Chemische Analyseo	Testsystem ^d	Reinheit (%)/ Salinität (‰)	Bemerkungen	Validität	Referenz
Mollusken	Mytilus edulis trossulus (adult)	"Scope for Growth" (SFG)	14	d	NOEC ^b	><	88; 880	С	R	≥ 99/ 66	SFG = integrierender, physiologischer Stressendpunkt	2	Ericson et al. 2010
Mollusken	Mytilus galloprovincialis	Fressrate	10	d	NOEC	$\stackrel{\scriptstyle \scriptstyle \vee}{_{\scriptstyle \sim}}$	11; 147	С	R	analyt.		2	Solé <i>et al.</i> 2010
	Mikrokosmosstudien												
	akute Effektdaten												
	limnisch												
Bakterien	div.	Peptidaseaktivität	6	h	NOEC	=	341	С	S	analyt.		3	Bonnineau <i>et al.</i> 2010
Bakterien	div.	Mortalität (Anzahl toter Zellen)	24	h	NOEC	v	208	С	S	analyt.		3	Bonnineau <i>et al.</i> 2010
Bakterien	div.	Katalaseaktivität	24	h	NOEC	v	208	С	S	analyt.		3	Bonnineau <i>et al.</i> 2010
Cyanobakterien	div.	Photosyntheseinhibition (Quantum Yield)	6	h	NOEC	=	300	С	S	analyt.		3	Bonnineau et al. 2010
Cyanobakterien	div.	Photosyntheseinhibition (Quantum Yield)	24	h	NOEC	=	484	С	S	analyt.		3	Bonnineau et al. 2010
Algen	div.	Photosyntheseinhibition (Quantum Yield)	24	h	NOEC	=	379	С	S	analyt.		3	Bonnineau et al. 2010
Algen	Phaeophyceae	Photosyntheseinhibition (Quantum Yield)	24	h	NOEC	=	489	С	S	analyt.		3	Bonnineau et al. 2010
Algen und Cyanobakterien	div.	Photosyntheseinhibition (Quantum Yield)	6	h	NOEC	=	293	С	S	analyt.		3	Bonnineau et al. 2010
Algen und Cyanobakterien	div.	Photosyntheseinhibition (Quantum Yield)	24	h	NOEC	=	484	С	S	analyt.		3	Bonnineau et al. 2010
		· · · · ·				m	arin						
Algen	Periphyton, dominiert von Diatomeen	Biomasse (Totaler Pigmentgehalt)	96	h	EC50 ^a	=	84	С	R	> 95		3	Backhaus et al. 2011
Algen	Periphyton, dominiert von Diatomeen	Biomasse (Chlorophyll(α)-Gehalt)	96	h	EC50 ^a	=	92	С	R	> 95		3	Backhaus et al. 2011
Algen	Periphyton, dominiert von Diatomeen	Biomasse (Diadinoxanthin-Gehalt)	96	h	EC50 ^a	=	78.3	С	R	> 95		3	Backhaus et al. 2011
Algen	Periphyton, dominiert von Diatomeen	Biomasse (Diatoxanthin-Gehalt)	96	h	EC50 ^a	=	65.4	С	R	> 95		3	Backhaus et al. 2011
Algen	Periphyton, dominiert von Diatomeen	Biomasse (Fucoxanthin-Gehalt)	96	h	EC50 ^a	=	81.7	С	R	> 95		3	Backhaus et al. 2011
Algen	Periphyton, dominiert von Diatomeen	Biomasse (Prasinoxanthin-Gehalt)	96	h	EC50 ^a	=	133	С	R	> 95		3	Backhaus et al. 2011
Algen	Periphyton, dominiert von Diatomeen	Biomasse (Zeaxanthin-Gehalt)	96	h	EC50 ^a	=	82.1	С	R	> 95		3	Backhaus et al. 2011
Algen	Periphyton, dominiert von Diatomeen	Biomasse (β-Caroten-Gehalt)	96	h	EC50 ^a	=	102	С	R	> 95		3	Backhaus et al. 2011

^a Effektwert (in g/L Propranolol) = Effektwert (in M) · Molmasse von Propranolol (259.35 g/L)

^b Umrechnungsfaktor = MW_{Propranolol} : MW_{Propranolol-Hydrochlorid} = 259.34 g/L : 295.8 g/L = 0.877

^c A = Testkonzentrationen zu Beginn und Testende gemessen und für Effektbestimmung verwendet; B = nominale Testkonzentrationen für Effektbestimmung verwendet, gemessene Wiederfindung ± 20 % der Nominalen; C = Testkonzentrationen nicht gemessen oder nur zu einem einzigen Zeitpunkt während des Experiments

^d F = Durchfluss; R = semi-statisch; S = statisch

4 Graphische Darstellung der Effektdaten

Abbildung 1 zeigt alle validen, expliziten Kurzzeit- und Langzeiteffektwerte aus Tabelle 3 aufgeschlüsselt in Organismengruppen.

Abbildung 1 Grafische Darstellung aller validen (schwarzen) Kurzzeit (KZ)- und Langzeit (LZ)-Effektdaten aus Tabelle 3 für Propranolol.

4.1 Vergleich marine/limnische Organismen

Aus dem limitierten Datensatz für marine Organismen ist keine erhöhte Empfindlichkeit ersichtlich. Für die folgende EQS-Ableitung wurden daher beide Datensätze zusammengelegt.

5 Herleitung der EQS

Um chronische und akute Qualitätsziele herzuleiten, kann die Sicherheitsfaktormethode (AF-Methode) auf der Basis von Kurzzeit- und Langzeiteffektdaten verwendet werden. Dabei wird mit dem tiefsten chronischen Datenpunkt ein AA-EQS (Annual-Average-Environmental-Quality-Standard) und mit dem tiefsten akuten Datenpunkt ein MAC-EQS (Maximum-Acceptable-Concentration-Environmental-Quality-Standard) abgeleitet. Wenn der Datensatz umfassend genug ist, können diese EQS zusätzlich mittels einer Speziessensitivitätsverteilung (SSD) bestimmt werden. Valide Mikro-/Mesokosmosstudien dienen einerseits zur Verfeinerung des AF, der durch eine SSD hergeleitet wurde. Andererseits können sie auch direkt zur Bestimmung eines EQS verwendet werden.

6 Chronische Toxizität

6.1 AA-EQS Herleitung mit AF-Methode

Tabelle 4 zeigt die kritischen Langzeiteffektwerte für Propranolol.

Tabelle 4Übersicht zu den kritischen Toxizitätswerten für Wasserorganismen aus längerfristigen Untersuchungen mitPropranolol. >< = Effektwert liegt zwischen den angegebenen Werten.</td>

Gruppe	Art	Wert	Konz. in µg/L	Referenz
Krebstiere	Ceriodaphnia dubia	NOEC	8	Ferrari <i>et al</i> . 2004
Fische	Pimephales promelas	NOEC	>< 6.8; 88	Giltrow <i>et al</i> . 2009
Rädertierchen	Brachionus calyciflorus	NOEC	160	Ferrari <i>et al.</i> 2004

Es sind valide Effektdaten für Invertebraten und Vertebraten vorhanden. Gemäss TGD for EQS kann in diesem Fall ein AF von 50 angewendet werden. Der AA-EQS wird vom NOEC für *Ceriodaphnia dubia* (8 µg/L) abgeleitet, da der NOEC von 6.8 µg/L aus dem Test mit *P. promelas* aufgrund der grossen Abstände der angewendeten Testkonzentrationen mit einer grossen Unsicherheit behaftet ist.

AA-EQS (AF) = 8 µg/L / 50 = 0.160 µg/L

6.2 AA-EQS mit SSD-Methode

Es sind nicht genügend valide Daten vorhanden um ein AA-EQS mittels SSD abzuleiten.

6.3 AA-EQS aus Mikro-/Mesokosmosstudien

Es sind keine validen Effektwerte aus den Mikrokosmosstudien vorhanden, so dass ein AA-EQS basierend auf diesen Studien nicht direkt abgeleitet werden kann.

7 Akute Toxizität

7.1 MAC-EQS Herleitung mit AF-Methode

Tabelle 5 zeigt die kritischen akuten Effektwerte für Propranolol. Die Standardabweichung aller logarithmierten akuten Effektwerte aus Tabelle 3 beträgt 0.9. Propranolol wird gemäss EC (2001) als sehr giftig eingestuft (Tabelle 6).

Tabelle 5	Übersicht	der kritischen	akuten	Toxizitätswerte fü	r Wasserorganismen	aus kurzfristigen	Untersuchungen mit
Propranolol.							

Gruppe	Art	Wert	Konz. in µg/L	Referenz
Algen und höhere Wasserpflanzen	Lemna minor	EC50	18'600	Kaza <i>et al.</i> 2007
Krebstiere	Ceriodaphnia dubia	EC50	1'320	Fraysse und Garric 2005; Ferrari <i>et al.</i> 2004
Fische	Pimephales promelas	LC50	1'210	Stanley <i>et al.</i> 2006
Protozoen	Spirostomum ambiguum	EC50	2'252	Nalecz-Jawecki und Sawicki 2003; Nalecz-Jawecki 2004; Nalecz-Jawecki <i>et al</i> . 2008
Rädertierchen	Brachionus calyciflorus	EC50	2'230	Calleja <i>et al.</i> 1994; Nalecz- Jawecki <i>et al.</i> 2011
Bakterien	Aliivibrio fischeri (marin)	EC50	53'000	Ferrari <i>et al</i> . 2004

Risikoklasse	Niedrigster EC50-Wert	Erreichter Wert
Nicht eingestuft	>100mg/l	
schädlich	<100mg/l; >10 mg/l	
Giftig	<10mg;>1mg/l	
Sehr giftig	<1mg/l	х

Tabelle 6Risikoklassierung der akuten aquatischen Toxizität von Propranololanhand der niedrigsten gemessenen EC50-Werte nach der EuropäischenKommission (EC 2001).

Es ist mindestens ein valider akuter LC/EC 50 für alle drei trophischen Ebenen vorhanden, so dass ein AF von 100 angewendet werden kann. Gemäss TGD for EQS kann der AF auf 10 reduziert werden, wenn die Standardabweichung aller valider akuten log-transformierten Effektwerte < 0.5 beträgt oder der Wirkmechanismus der Substanz bekannt und ein Repräsentant der sensitivsten Organismengruppe vorhanden ist. Da die Standardabweichung 0.9 beträgt und keine Organismengruppe ein spezifische Empfindlichkeit auf Propranolol aufzeigt, wird der AF bei 100 belassen.

MAC-EQS (AF) = 1'210μg/L / 100 = 12.1 μg/L ≈ 12 μg/L

7.2 MAC-EQS mit SSD Methode

Es sind nicht genügend valide Daten vorhanden um ein AA-EQS mittels SSD abzuleiten.

7.3 MAC-EQS aus Mikro-/Mesokosmosstudien

Es sind keine validen Effektwerte aus den Mikrokosmosstudien vorhanden, so dass ein MAC-EQS basierend auf diesen Studien nicht direkt abgeleitet werden kann.

8 Bioakkumulationsabschätzung

Das Bioakkumulationspotential soll gemäß TGD for EQS weiter untersucht werden, wenn der Log $K_{ow} \ge 3$ ist und/oder der Biokonzentrationsfaktor (BKF) > 100 beträgt. Um pH 7 kommt Propranolol hauptsächlich als Kation vor mit experimentell bestimmten Log K_{ow} von 0.5 bis 1.2 (Tabelle 1). Experimentelle BKF Werte liegen zwischen 0.54 – 0.6 für Leber- und Kiemengewebe von *Ictalurus punctatus* und *Oncorhynchus mykiss* (Gomez *et al.* 2010). Die Gefahr durch sekundäre Intoxikation kann daher als gering eingeschätzt werden.

9 Schutz der aquatischen Organismen

Auf Basis des vorliegenden Datensatzes verspricht ein MAC-EQS von 12 µg/L genügend protektiv hinsichtlich der akuten Wirkung von Propranolol auf aquatische Lebewesen zu sein. Für Algen wäre ein valider, akuter Effektwert wünschenswert um dies zu bestätigen.

Unter Langzeitexposition scheinen Vertebraten am empfindlichsten auf Propranolol zu reagieren (Owen *et al.* 2007). Der β -Blocker verringert die Herzfrequenz in Larven von Zebrafischen (*Danio rerio*) und Medaka (*Oryzias latipes*) bei 0.08 µg/L, wenn die Eltern schon für 24 Stunden der gleichen Konzentration von Propranolol ausgesetzt sind (Finn *et al.* 2012). Die Populationsrelevanz dieses Endpunktes ist jedoch nicht klar und kann gemäss TGD for EQS nicht für die EQS-Ableitung verwendet werden. Reproduktionsstudien mit Medaka und *Pimephales promelas* ergaben widersprüchliche Ergebnisse. Huggett *et al.* (2002) beobachteten Effekte bei 0.4 µg/L Propranolol in Medaka, wogegen in Giltrow *et al.* (2009) schon bei 88 µg/L keine signifikanten Effekte mehr bei *Pimephales promelas* messbar waren. Auch Lorenzi *et al.* (2012) geben einen NOEC von über 4 µg/L für die gleiche Spezies an. Ein AA-EQS von 0.160 µg/L sollte daher auf Basis der derzeitigen Kenntnisse genügend protektiv zu sein. Die Auswirkungen von Propranolol auf Vertebraten, insbesondere auf die Reproduktion, sollte aber weiter untersucht werden.

AA-EQS = 0.160 μg/L MAC-EQS = 12 μg/L

10 Referenzen

- Alder A C, Schaffner C, Majewsky M, Klasmeier J, Fenner K (2010): Fate of β-blocker human pharmaceuticals in surface water: Comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland. Water Research 44(3): 936-948
- Andreozzi R, Marotta R, Paxéus N (2003): Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50(10): 1319-1330
- Avdeef A, Box K J, Comer J E A, Hibbert C, Tam K Y (1998): pH-Metric logP 10. Determination of liposomal membranewater partition coefficients of ionizable drugs. Pharmaceutical Research 15(2): 209-215
- Backhaus T, Porsbring T, Arrhenius A, Brosche S, Johansson P, Blanck H (2011): Single-substance and mixture toxicity of five pharmaceuticals and personal care products to marine periphyton communities. Environmental Toxicology and Chemistry 30(9): 2030-2040
- Balon K, Riebesehl B U, Müller B W (1999): Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption. Pharmaceutical Research 16(6): 882-888
- Baranowska I, Kowalski B (2011): Using HPLC method with DAD detection for the simultaneous determination of 15 drugs in surface water and wastewater. Polish Journal of Environmental Studies 20(1): 21-28
- Bartram A E, Winter M J, Huggett D B, McCormack P, Constantine L A, Hetheridge M J, Hutchinson T H, Kinter L B, Ericson J F, Sumpter J P, Owen S F (2012): In vivo and in vitro liver and gill EROD activity in rainbow trout (*Oncorhynchus mykiss*) exposed to the beta-blocker propranolol. Environmental Toxicology 27(10): 573-582
- Betageri G V, Rogers J A (1987): Thermodynamics of partitioning of β-blockers in the n-octanol-buffer and liposome systems. International Journal of Pharmaceutics 36(2-3): 165-173
- Bonnineau C, Guasch H, Proia L, Ricart M, Geiszinger A, Romaní A M, Sabater S (2010): Fluvial biofilms: A pertinent tool to assess β-blockers toxicity. Aquatic Toxicology 96(3): 225-233
- Calleja M C, Persoone G, Geladi P (1994): Human acute toxicity prediction of the first 50 MEIC chemicals by a battery of ecotoxicological tests and physicochemical properties. Food and Chemical Toxicology 32(2): 173-187
- Chen Y, Hu C, Hu X, Qu J (2009): Indirect photodegradation of amine drugs in aqueous solution under simulated sunlight. Environmental Science and Technology 43(8): 2760-2765
- Cleuvers M (2002): Aquatic ecotoxicology of selected pharmaceutical agents Algal and acute Daphnia tests. Aquatische ökotoxikologie ausgewählter Arzneimittel: Algentest und akuter Daphnientest <u>Umweltwissenschaften und Schadstoff-</u> <u>Forschung</u> 14(2): 85-89
- Cleuvers M (2003): Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicology Letters 142(3): 185-194

- Cleuvers M (2005): Initial risk assessment for three β -blockers found in the aquatic environment. Chemosphere 59(2): 199-205
- Dzialowski E M, Turner P K, Brooks B W (2006): Physiological and reproductive effects of beta adrenergic receptor antagonists in *Daphnia magna*. Archives of Environmental Contamination and Toxicology 50(4): 503-510
- EC (2001): Richtlinie 2001/59/EG der Kommission vom 6. August 2001 zur 28. Anpassung der Richtlinie 67/548/EWG des Rates zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten für die Einstufung, Verpackung und Kennzeichnung gefährlicher Stoffe an den technischen Fortschritt. Annex 6. Amtsblatt der europäischen Gemeinschaften L225/263
- EC (2011): Common implementation strategy for the Water Framework Directive (2000/60/EC). Guidance document No.
 27. Technical guidance for deriving environmental quality standards. Technical report 2011-055. European Communities
- EPI Suite (2011): Version 4.10 .The EPI (Estimation Programs Interface) Suite™. A Windows®-based suite of physical/chemical property and environmental fate estimation programs developed by the EPA's Office of Pollution Prevention Toxics and Syracuse Research Corporation (SRC)
- Ericson H, Thorsén G, Kumblad L (2010): Physiological effects of diclofenac, ibuprofen and propranolol on Baltic Sea blue mussels. Aquatic Toxicology 99(2): 223-231
- Escher B I, Bramaz N, Maurer M, Richter M, Sutter D, Von Känel C, Zschokke M (2005): Screening test battery for pharmaceuticals in urine and wastewater. Environmental Toxicology and Chemistry 24(3): 750-758
- Escher B I, Bramaz N, Richter M, Lienert J (2006): Comparative ecotoxicological hazard assessment of beta-blockers and their human metabolites using a mode-of-action-based test battery and a QSAR approach. Environmental Science and Technology 40(23): 7402-7408
- ESIS (2013): http://esis.jrc.ec.europa.eu (zuletzt abgerufen am 10.04.2013)

Fent K, Weston A A, Caminada D (2006): Ecotoxicology of human pharmaceuticals. Aquatic Toxicology 76(2): 122-159

- Ferrari B, Mons R, Vollat B, Fraysse B, Paxéus N, Lo Giudice R, Pollio A, Garric J (2004): Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental Toxicology and Chemistry 23(5): 1344-1354
- Finn J, Hui M, Li V, Lorenzi V, de la Paz N, Cheng S H, Lai-Chan L, Schlenk D (2012): Effects of propranolol on heart rate and development in Japanese medaka (*Oryzias latipes*) and zebrafish (*Danio rerio*). Aquatic Toxicology 122-123: 214-221
- Fraysse B, Garric J (2005): Prediction and experimental validation of acute toxicity of β-blockers in *Ceriodaphnia dubia*. Environmental Toxicology and Chemistry 24(10): 2470-2476
- Fraysse B, Mons R, Garric J (2006): Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotoxicology and Environmental Safety 63(2): 253-267

- Giltrow E, Eccles P D, Winter M J, McCormack P J, Rand-Weaver M, Hutchinson T H, Sumpter J P (2009): Chronic effects assessment and plasma concentrations of the β-blocker propranolol in fathead minnows (*Pimephales promelas*). Aquatic Toxicology 95(3): 195-202
- Gomez C F, Constantine L, Huggett D B (2010): The influence of gill and liver metabolism on the predicted bioconcentration of three pharmaceuticals in fish. Chemosphere 81(10): 1189-1195
- Huggett D B, Brooks B W, Peterson B, Foran C M, Schlenk D (2002): Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (B-blockers) on aquatic organisms. Archives of Environmental Contamination and Toxicology 43(2): 229-235
- Kaza M, Nałęcz-Jawecki G, Sawicki J (2007): The toxicity of selected pharmaceuticals to the aquatic plant *Lemna minor*. Fresenius Environmental Bulletin 16(5): 524-531
- Klimisch H J, Andreae M, Tillmann U (1997): A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology 25(1): 1-5
- Láng J, Kohidai L (2012): Effects of the aquatic contaminant human pharmaceuticals and their mixtures on the proliferation and migratory responses of the bioindicator freshwater ciliate *Tetrahymena*. Chemosphere 89(5): 592-601
- Larsson D G J, Fredriksson S, Sandblom E, Paxeus N, Axelsson M (2006): Is heart rate in fish a sensitive indicator to evaluate acute effects of β-blockers in surface water? Environmental Toxicology and Pharmacology 22(3): 338-340
- Lilius H, Isomaa B, Holmstrom T (1994): A comparison of the toxicity of 50 reference chemicals to freshly isolated rainbow trout hepatocytes and *Daphnia magna*. Aquatic Toxicology 30(1): 47-60
- Lilius H, Hastbacka T, Isomaa B (1995): A comparison of the toxicity of 30 reference chemicals to *Daphnia magna* and *Daphnia pulex*. Environmental Toxicology and Chemistry 14(12): 2085-2088
- Lin A Y C, Reinhard M (2005): Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environmental Toxicology and Chemistry 24(6): 1303-1309
- Lin A Y C, Tsai Y T (2009): Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of the Total Environment 407(12): 3793-3802
- Liu Q T, Williams H E (2007): Kinetics and degradation products for direct photolysis of β-blockers in water. Environmental Science and Technology 41(3): 803-810
- Liu Q T, Williams T D, Cumming R I, Holm G, Hetheridge M J, Murray-Smith R (2009a): Comparative aquatic toxicity of propranolol and its photodegraded mixtures: Algae and rotifer screening. Environmental Toxicology and Chemistry 28(12): 2622-2631
- Liu Q T, Cumming R I, Sharpe A D (2009b): Photo-induced environmental depletion processes of β-blockers in river waters. Photochemical and Photobiological Sciences 8(6): 768-777

- Lorenzi V, Mehinto A C, Denslow N D, Schlenk D (2012): Effects of exposure to the β-blocker propranolol on the reproductive behavior and gene expression of the fathead minnow, *Pimephales promelas*. Aquatic Toxicology 116-117: 8-15
- Nałęcz-Jawecki G, Sawicki J (2003): The toxicity of selected pharmaceuticals to the protozoa *Spirostomum ambiguum* and *Tetrahymena termophila*. Fresenius Environmental Bulletin 12(8): 840-843
- Nałecz-Jawecki G (2004): Spirotox Spirostomum ambiguum acute toxicity test 10 years of experience. Environmental Toxicology 19(4): 359-364
- Nałeçcz-Jawecki G, Persoone G (2006): Toxicity of selected pharmaceuticals to the anostracan crustacean *Thamnocephalus platyurus*: Comparison of sublethal and lethal effect levels with the 1h Rapidtoxkit and the 24h Thamnotoxkit microbiotests. Environmental Science and Pollution Research 13(1): 22-27
- Nałęcz-Jawecki G, Wójcik T, Sawicki J (2008): Evaluation of in vitro biotransformation of propranolol with HPLC, MS/MS, and two bioassays. Environmental Toxicology 23(1): 52-58
- Nałęcz-Jawecki G N, Szczesny Ł, Solecka D, Sawicki J (2011): Short ingestion tests as alternative proposal for conventional range finding assays with *Thamnocephalus platyurus* and *Brachionus calyciflorus*. International Journal of Environmental Science and Technology 8(4): 687-694
- Neuwoehner J, Escher B I (2011): The pH-dependent toxicity of basic pharmaceuticals in the green algae *Scenedesmus vacuolatus* can be explained with a toxicokinetic ion-trapping model. Aquatic Toxicology 101(1): 266-275
- Nogrady T, Rowe T L A (1993): Comparative laboratory studies of narcosis in *Brachionus plicatilis*. Hydrobiologia 255-256(1): 51-56
- Oskarsson H, Eriksson Wiklund A K, Lindh K, Kumblad linda L (2012): Effect studies of human pharmaceuticals on *Fucus vesiculosus* and *Gammarus* spp. Marine Environmental Research 74: 1-8
- Owen S F, Giltrow E, Huggett D B, Hutchinson T H, Saye J, Winter M J, Sumpter J P (2007): Comparative physiology, pharmacology and toxicology of β-blockers: Mammals versus fish. Aquatic Toxicology 82(3): 145-162
- Owen S F, Huggett D B, Hutchinson T H, Hetheridge M J, Kinter L B, Ericson J F, Sumpter J P (2009): Uptake of propranolol, a cardiovascular pharmaceutical, from water into fish plasma and its effects on growth and organ biometry. Aquatic Toxicology 93(4): 217-224
- Pauletti G M, Wunderli-Allenspach H (1994): Partition coefficients in vitro: artificial membranes as a standardized distribution model. European Journal of Pharmaceutical Sciences 1(5): 273-282

PharmaWiki (2013): http://www.pharmawiki.ch (zuletzt abgerufen am 05.04.2013)

Piram A, Faure R, Chermette H, Bordes C, Herbreteau B, Salvador A (2012): Photochemical behaviour of propranolol in environmental waters: The hydroxylated photoproducts. International Journal of Environmental Analytical Chemistry 92(1): 96-109 Piram A, Salvador A, Verne C, Herbreteau B, Faure R (2008): Photolysis of β-blockers in environmental waters. Chemosphere 73(8): 1265-1271

Pubchem (2013): http://pubchem.ncbi.nlm.nih.gov (zuletzt abgerufen am 10.04.2013)

- Santos L H M L M, Araújo A N, Fachini A, Pena A, Delerue-Matos C, Montenegro M C B S M (2010): Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials 175(1-3): 45-95
- Solé M, Shaw J P, Frickers P E, Readman J W, Hutchinson T H (2010): Effects on feeding rate and biomarker responses of marine mussels experimentally exposed to propranolol and acetaminophen. Analytical and Bioanalytical Chemistry 396(2): 649-656
- Stanley J K, Brooks B W (2009): Perspectives on ecological risk assessment of chiral compounds. Integrated Environmental Assessment and Management 5(3): 364-373
- Stanley J K, Ramirez A J, Mottaleb M, Chambliss C K, Brooks B W (2006): Enantiospecific toxicity of the β-blocker propranolol to *Daphnia magna* and *Pimephales promelas*. Environmental Toxicology and Chemistry 25(7): 1780-1786
- Ternes T A (1998): Occurrence of drugs in German sewage treatment plants and rivers. Water Research 32(11): 3245-3260
- Wiklund A K E, Oskarsson H, Thorsén G, Kumblad L (2011): Behavioural and physiological responses to pharmaceutical exposure in macroalgae and grazers from a Baltic Sea littoral community. Aquatic Biology 14(1): 29-39

11 Appendix

Tabelle A1 Resultate von chemischen Analysen der Testkonzentrationen aus Biotests

Stabilität	Lichtquelle	Licht- spektrum	Lichtstärke	Licht- regime	Medium	Temp.	рН	Test- konzentration	Testsetup	Weitere Angaben	Quelle
kein Abbau nach nach 7 Tagen	Fluoreszenz- lampe	simuliertes Sonnenlicht	7000 lux = 125 µmol m-2 s-1	kA	ISO	kA	5.5 - 8.0	höchste TK (kA über Wert)	Labortest	Lemnatest nach ISO	Kaza et al. 2007
> 80% Wiederfindung nach 3 Tagen	kA	kA	13'000 (max) = 232 µmol m-2 s-1	cont.	OECD	24°C		0.15 - 5 mg/L	Labortest	Algentest	Liu et al. 2009a
TKs 0.9 und 90 μg/L nicht detektierbar nach 24 h (Detektionslimit: 74 μg/L); 900 μg/L -> 74; 9000 μg/L - > 208	kA	kA	120 µmol m-2 s-1	12:12	filtriertes Leitungswass er	20°C	8.46	0.9; 90; 900; 9000 μg/L	Mikrokosmosstu die in Labor	mit Biofilm	Bonnineau et al. 2010
TKs 0.9 und 90 μg/L nicht detektierbar nach 24 h (Detektionslimit: 74 μg/L); 900 μg/L -> 487; 9000 μg/L -> 532	kA	kA	120 µmol m-2 s-1	12:12	filtriertes Leitungs- wasser	20°C	8.46	0.9; 90; 900; 9000 μg/L	Mikrokosmosstu die in Labor	ohne Biofilm	Bonnineau et al. 2010
> 40% mean measured von TK gemessen nach 0, 13 und 20 Tagen (alle 5 Tage 50% der TK ersetzt)	kA	kA	kA	16:08	kA	25°C		0.1; 1; 10 μg/L	Labortest	Fischtest (<i>Pimephales</i> <i>promelas</i>)	Lorenzi et al. 2012