2017

Schweizerisches Zentrum für angewandte Ökotoxikologie Centre Suisse d'écotoxicologie appliquée Eawag-EPFL

EQS - Vorschlag des Oekotoxzentrums für:

Triclosan

Ersterstellung: 30.05.2011 Aktualisierung: 30.06.2017

1 EQS-Vorschläge

AA-EQS: 0.1 μ g/L (vorher 0.02 μ g/L)

MAC-EQS: $0.1 \mu g/L$ (vorher $0.02 \mu g/L$)

Das chronische Qualitätskriterium (CQK) und das akute Qualitätskriterium (AQK) wurden nach dem TGD for EQS der Europäischen Kommission (EC 2011) hergeleitet. Damit die Dossiers international vergleichbar sind, wird im Weiteren die Terminologie des TGD verwendet.

2 Physikochemische Parameter

In Tabelle 1 werden Identität, chemische und physikalische Parameter für Triclosan angegeben. Wo bekannt, wird mit (exp) spezifiziert, dass es sich um experimentell erhobene Daten handelt, während es sich bei mit (est) gekennzeichneten Daten um abgeschätzte Werte handelt. Wenn keine dieser beiden Angaben hinter den Werten steht, fand sich in der zitierten Literatur keine Angabe.

Tab. 1: Geforderte Angaben zu Triclosan nach dem TGD for EQS (European Commission, 2011) zusätzliche Angaben in kursiv.

Eigenschaften	Name/Wert	Referenz
IUPAC Name	5-chloro-2-(2,4-dichlorophenoxy)phenol	http://esis.jrc.ec.e
		uropa.eu
Chemische Gruppe	chlorierte Biphenylether	Orvos et al. 2002
Strukturformel	CI	http://esis.jrc.ec.e
	CIOH	uropa.eu
CAS-Nummer	3380-34-5	http://esis.jrc.ec.e uropa.eu
EINECS-Nummer	222-182-2	http://esis.jrc.ec.e
		uropa.eu
Summenformel	C12H7Cl3O2	EPI Suite™ (US
		EPA 2008)

Eigenschaften	Name/Wert	Referenz
SMILES-code	O(c(c(O)cc(c1)Cl)c1)c(c(cc(c2)Cl)Cl)c2	EPI Suite™ (US EPA 2008)
Molekulargewicht (g·mol-1)	289.55	EPI Suite™ (US EPA 2008)
Schmelzpunkt (°C)	136.79 (est)	EPI Suite™ (US EPA 2008)
Siedepunkt (°C)	373.62 (est)	EPI Suite™ (US EPA 2008)
Dampfdruck (Pa)	0.00062 (est)	EPI Suite™ (US EPA 2008)
Henry's-Konstante (Pa·m3·mol-1)	5.05*10-4 (est: Bond Method); 2.16*10-3 (est: Group Method)	EPI Suite™ (US EPA 2008)
Wasserlöslichkeit (mg·L-1)	10 (exp)	EPI Suite™ (US EPA 2008)
рКа	8.01	Sparc (2010)
n-Octanol/Wasser Verteilungskoeffizient(log Kow)	4.76 (exp); 4.8 (exp)	EPI Suite™ (US EPA 2008); Ciba- Geigy Limited 1990 zitiert in NICNAS 2009
Sediment/ Wasser Verteilungskoeffizient (log Koc)	3.925 (est Kow Methode); 4.67 (exp)	EPI Suite™ (US EPA 2008); Balmer et al. 2004

3 Allgemeines

Anwendung:

Triclosan wird wegen seiner Breitspektrumwirkung gegen Bakterien, Schimmelpilze und Hefen in verschiedenen medizinischen und nichtmedizinischen Produkten verwendet. Dazu gehören unter anderem Hygieneprodukte wie Mundspülungen, Zahnpasta und Deodorants, dekorative Kosmetik wie Augenmakeup, Textilien wie Sportsocken, Kissen, Handtücher und Polstermöbel, Plastikprodukte wie Toilettensitze und Zahnbürsten und **PVC** Teppiche, medizinische Desinfektionsmittel. Pickelcremes und Gels Behandlung zur von Verbrennungen (NICNAS 2009).

Wirkungsweise:

Über die Wirkungsweise ist noch nicht viel bekannt. Für *E.coli* haben McMurry et al. (1998) gezeigt, dass Triclosan die Lipidsynthese blockiert, indem es das Enzym "Enoylacyl Carrier Reductase" (ENR) spezifisch hemmt. Die

Strukturaufklärung dieser spezifischen Hemmung wurde von Levy et al. (1999) gemacht. Die Ergebnisse von Franz et al. (2008) deuten darauf hin, dass Triclosan in Algen auch eine entkoppelnde Wirkung haben könnte.

Analytik:

al. (2002)berichten für Triclosan Singer et in Oberflächengewässern eine Bestimmungsgrenze von 1 GC/MS ng/L mit nach SPE-Anreicherung. Die Nachweisgrenze liegt bei 0.2 ng/L mit GC/MS nach SPE-Anreicherung (Boyd et al. 2003).

Stabilität

In der Veröffentlichung von Orvos et al. (2002) wurden die Ergebnisse zahlreicher Industriestudien publiziert, in denen auch die Testkonzentrationen überprüft worden sind. Es zeigte sich eine gute Stabilität im 72h-Algentest (88% und 75% nominalen Konzentration). Im Daphniender Reproduktionstest (pH 8.2-8.6) variierte die Wiederfindung 30% bis 77%. von Im ..ELS"-Test mit der Regenbogenforelle wurde hingegen eine "exzellente Stabilität" beobachtet (pH 8.2). Fort et al. (2010) haben eine Wiederfindung von 50%-77% beobachtet (keine Angabe des pH Wertes). Bei der für die EQS-Ableitung kritischen Studie von Yang et al. 2008 wurde keine Überprüfung der Testkonzentrationen vorgenommen. Da aber die Testdauer sowie der Test-pH vergleichbar mit der Algenstudie aus Orvos et al. (2002) sind, wird davon ausgegangen, dass die Testkonzentration nicht signifikant von der nominalen Konzentration abweicht.

4 Effektdatensammlung

Für Triclosan wurden Einzelspeziesstudien mit Bakterien, Algen, höheren Wasserpflanzen, Krebstieren, Insekten Amphibien und Fischen gefunden (Tabelle 2).

Tab.2: Effektdatensammlung für Triclosan. Literaturdaten die in grau dargestellt wurden, erfüllen nicht die Datenanforderungen nach dem TGD for EQS (Kommission der europäischen Gemeinschaften 2010), sollen aber als zusätzliche Information genannt werden. Eine Bewertung der Validität wurde nach den Klimisch-Kriterien (Klimisch et al. 1997) durchgeführt. Eine Unterscheidung in nominale und tatsächliche Testkonzentration wurde in der Tabelle nicht vollzogen, aber für die EQS-relevanten Studien (siehe Tab. 3 + 6) wurden nur Studien verwendet, bei denen eine signifikante Abweichung unwahrscheinlich ist (siehe auch Kapitel über die Stabilität).

		EFFEKTDA	TENRE	CHERI	ECHE						
Sammelbezeichnung	Organismus	Endpunkt	pH Wert (Start)/Salinität	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Validität	Literaturquelle
		akute Ef	fektdateı	n limnisc	h	•		•			
Cyanobakterien	Anabaena flos aquae	Biomasse (Zellzahl)	7.5	96	h	EC50	=	1.6	μg/L	1	Orvos et al. 2002 vermutlich bezogen auf Daten in Drottar und Krüger 1998
Cyanobakterien	Anabaena flos aquae	Biomasse (Zellzahl)	7.4-7.8	96	h	EC50	=	1.6	μg/L	1	Drottar und Krüger 1998
Cyanobakterien	Anabaena flos-aquae	Biomasse	7.3-7.5	96	h	EC50	=	0.97	μg/L	2	Carolina Ecotox Inc. 1997 auch zitiert in NICNAS 2009
Cyanobakterien	Anabaena flos-aquae	Wachstumsrate (neu ausgewertet)	7.3-7.5	96	7.3-7.5	EC50	=	1.31	μg/L	2	Carolina Ecotox Inc. 1997
Cyanobakterien	Anabaena f0.98los aquae	Wachstumsrate (neu ausgewertet)	7.4-7.8	96	h	EC50	=	4.81	μg/L	1	Drottar und Krüger 1998
Cyanobakterien	Anabaena flos-aquae	Geometrischer Mittelwert Wachstumsrate 96 h						<u>2.51</u>	μg/L		

		EFFEKTDA	TENRE	CHERI	ECHE						
Sammelbezeichnung	Organismus	Endpunkt	pH Wert (Start)/Salinität	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Validität	Literaturquelle
Cyanobakterien	Anabaena flos aquae	Wachstumsrate (neu ausgewertet)	7.4-7.8	72	h	EC50	=	5.01	μg/L	1	Drottar und Krüger 1998
Algen	Closterium ehrenbergii	Wachstumsrate asexuelle Reproduktion	7.5	120	h	EC50	=	<u>620</u>	μg/L	2	Ciniglia et al. 2005
Algen	Desmodesmus subspicatus	Biomasse (Zellzahl)	7.5-7.8	72	h	EC50	=	0.7	μg/L	1	Orvos et al. 2002 & Wüthrich 1995
Algen	Desmodesmus subspicatus	Biomasse (Zellzahl)		96	h	EC50	=	1.4	μg/L	1	Orvos et al. 2002
Algen	Desmodesmus subspicatus (Scenedesmus subspicatus)	Biomasse (bezogen auf die gemessenen Konzentrationen)	k.A.	96	h	EC50	=	0.7	μg/L	2	Anonymus 1997 zitiert in ECHA 2015
Algen	Desmodesmus subspicatus	Wachstumsrate (Zellzahl)	7.5-7.8	72	h	EC50	=	2.8	μg/L	1	Orvos et al. 2002 & Wüthrich 1995
Algen	Desmodesmus subspicatus (Scenedesmus subspicatus) Desmodesmus	Wachstumsrate (bezogen auf die gemessenen Konzentrationen)	k.A. 8.0-	96	h	EC50	=	2.8	μg/L	2	Anonymus 1997 zitiert in ECHA 2015
Algen	subspicatus	Wachstumsrate (neu ausgewertet)	10.3	72	h	EC50	=	1.99	μg/L	1	Wüthrich 1995
Algen	Desmodesmus subspicatus (Scenedesmus subspicatus)	Wachstumsrate (neu ausgewertet)	7.5-9.5	72	h	EC50	=	1.89	μg/L	2	Drottar & Krueger 1999
Algen	subspicatus (Scenedesmus subspicatus)	Wachstumsrate (geometrischer Mittelwert)		72	h	EC50	=	1.94	μg/L		
Algen	Desmodesmus subspicatus (Scenedesmus subspicatus)	Wachstumsrate	7.5-9.5	96	h	EC50	=	1.61	μg/L	2	ECHA 2015 & Drottar & Krueger 1999
Algen	Desmodesmus subspicatus (Scenedesmus subspicatus)	Wachstumsrate (neu ausgewertet)	7.5- 10.2	72	h	EC50	=	1.76	μg/L	3	Stuerman & Hicks ABC Laboratories 1997
Algen	Desmodesmus subspicatus (Scenedesmus	Wachstumsrate (neu ausgewertet)	7.7-8.1	72	h	EC50	>	223	μg/L	2	Wüthrich 1990

		EFFEKTD <i>A</i>	ATENRE	CHER	ECHE						
Sammelbezeichnung	Organismus	Endpunkt	pH Wert (Start)/Salinität	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Validität	Literaturquelle
	subspicatus)										
Algen	Navicula pelliculosa	Biomasse (Zellzahl)	7.2-7.5	96	h	EC25	=	10.7	μg/L	1	Orvos et al. 2002
Algen	Navicula pelliculosa	Biomasse (Zellzahl)	7.2-7.8	96	h	EC50	-	19.1	μg/L	2	Orvos et al. 2002
Algen	Navicula pelliculosa	Wachstumsrate (Zellzahl)	7.2-7.8	96	h	EC50	-	<u>56.0</u>	μg/L	2	Orvos et al. 2002
	Pseudokirchneriella										
Algen	subcapitata	Wachstum (Yield)	7.7-8.6	72	h	EC50	=	0.53	μg/L	2	Yang et al. 2008
Algen	Pseudokirchneriella subcapitata	Wachstum (area under the curve)	7.5	96	h	EC50	=	12	μg/L	4	Harada et al. 2008
Algen	Pseudokirchneriella subcapitata			96	h	IC50	=	2.6	μg/L	4	Ferrari et al. 2002 zitiert in NICNAS 2009
Algen	Pseudokirchneriella subcapitata	Biomasse (Zellzahl)	7.3-7.5	96	h	EC25	=	2.44	μg/L	1	Orvos et al. 2002
	Pseudokirchneriella										Orvos et al. 2002 vermutlich bezogen auf Daten aus Carolina Ecotox Inc.
Algen	subcapitata	Biomasse (Zellzahl)	7.3-7.5	96	h	EC50	=	4.46	μg/L	1	1997
Algen	Pseudokirchneriella subcapitata	Biomasse (Zellzahl)	7.3-7.5	96	h	EC50	=	4.46	μg/L	1	Carolina Ecotox Inc. 1997
Algen	Pseudokirchneriella subcapitata	Biomasse (Zellzahl)	7.5-7.8	72	h	EC50	=	4.70	μg/L	3	Tatarazako et al. 2004
Algen	Pseudokirchneriella subcapitata	Wachstumsrate (neu ausgewertet)	7.3-7.5	96	h	EC50	=	15.8	μg/L	2	Carolina Ecotox Inc. 1997
Algen	Pseudokirchneriella subcapitata	Wachstumsrate	k.A.	72	h	EC50	=	5.1	μg/L	2	Tamura et al. 2013
Algen	Pseudokirchneriella subcapitata	Geometrischer Mittelwert Wachstumsrate				EC50	=	8.98	μg/L		
Algen	Pseudokirchneriella subcapitata (Selenastrum capricornutum)	Keine Angabe	7.8	96	h	EC50	=	112	μg/L	4	Li et al. 2013

		EFFEKTD	ATENRE	CHER	ECHE						
Sammelbezeichnung	Organismus	Endpunkt	pH Wert (Start)/Salinität	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Validität	Literaturquelle
Algen	Scenedemus vacuolatus	Reproduktion	6.8	24	h	EC50	=	<u>1.85</u>	μg/L	2	Franz et al. 2008
Algen	Scenedemus vacuolatus	Photosynthese (modelliert)	6.8	"infinit e"	h	EC50	=	9.4	μg/L	2	Franz et al. 2008
Gefässpflanzen	Lemna gibba	Biomasse (Zellzahl)	7.7-7.8	96	h	EC25	>	62.5	μg/L	1	Orvos et al. 2002
Gefässpflanzen	Lemna gibba	Biomasse (Zellzahl)	7.7-7.8	96	h	EC50	>	62.5	μg/L	1	Orvos et al. 2002
Gefässpflanzen	Lemna gibba	Wachstum (Frondzahl)		7	d	EC50	=	64.4	μg/L	2	Fulton et al. 2009
Gefässpflanzen	Lemna gibba	Wachstum (Frischgewicht)		7	d	EC50	=	56.9	μg/L	2	Fulton et al. 2009
Gefässpflanzen	Lemna gibba	Wachstum (Wachstumsrate)		7	d	EC50	=	<u>108.9</u>	μg/L	2	Fulton et al. 2009
Gefässpflanzen	Lemna minor	Wachstum		6	d	EC50	=	26.3	μg/L	2	Küster et al. 2007
Gefässpflanzen	Lemna minor	Wachstumsrate (Autorenkommunikation)		6	d	EC50	=	<u>27.5</u>	μg/L	2	Küster et al. 2007
Protozoa	Paramecium caudatum	Wachstumsrate		120	h	EC50	=	399	μg/L	3	Miyoshi et al. 2003
Protozoa	Paramecium caudatum	Wachstumsrate		48	h	EC50	=	475	μg/L	3	Miyoshi et al. 2003
Protozoa	Paramecium trichium	Wachstumsrate		120	h	EC50	=	1564	μg/L	3	Miyoshi et al. 2003
Protozoa	Paramecium trichium	Wachstumsrate		48	h	EC50	=	747	μg/L	3	Miyoshi et al. 2003
Rotifera	Plationus patulus	Immobilisierung	7.5	48	h	EC50	=	320	μg/L	2	Martinez-Gomez et al. 2015
Kleinkrebse	Ceriodaphnia dubia	Immobilisierung		48	h	EC50	=	123	μg/L	4	Ferrari et al. 2002 zitiert in NICNAS 2009
Kleinkrebse	Ceriodaphnia dubia	Immobilisierung	6.8-7	48	h	EC50	=	<u>120</u>	μg/L	2	Orvos et al. 2002
Kleinkrebse	Ceriodaphnia dubia	Immobilisierung	7.4-7.6	48	h	EC50	=	182	μg/L	2	Orvos et al. 2002
Kleinkrebse	Ceriodaphnia dubia	Immobilisierung	8-8.2	48	h	EC50	=	236	μg/L	2	Orvos et al. 2002
Kleinkrebse	Ceriodaphnia dubia	Immobilisierung	8.2-8.5	48	h	EC50	=	406	μg/L	2	Orvos et al. 2002
Kleinkrebse	Daphnia magna	lmmobilisierung		48	h	EC50	=	303	μg/L	4	Ferrari et al. 2002 zitiert in NICNAS 2009
Kleinkrebse	Daphnia magna	Immobilisierung		48	h	NOEC	=	100	μg/L	2	ABC Laboratories Inc. 1990 zitiert in

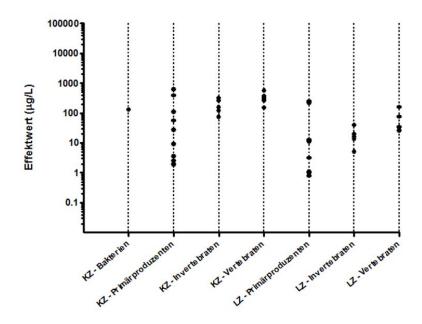
		EFFEKTD	ATENRE	CHER	ECHE						
Sammelbezeichnung	Organismus	Endpunkt	pH Wert (Start)/Salinität	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Validität	Literaturquelle
											NICNAS 2009
Kleinkrebse	Daphnia magna	Immobilisierung		48	h	EC50	=	260	μg/L	3	Harada et al. 2008
Kleinkrebse	Daphnia magna	Immobilisierung	8	48	h	EC50	=	338	μg/L	4	Wang et al. 2013
Kleinkrebse	Daphnia magna	Immobilisierung		48	h	EC50	=	191	μg/L	2	ECHA 2015
Kleinkrebse	Daphnia magna	Immobilisierung	8.3-8.5	48	h	EC50	-	390	μg/L	1	Orvos et al. 2002
Kleinkrebse	Daphnia magna	Immobilisierung	7.5	48	h	EC50	-	330	μg/L	2	Peng et al. 2013
Kleinkrebse	Daphnia magna	Immobilisierung	k.A. (nach OECD 202 6- 9)	48	h	EC50	=	180	μg/L	2	Tamura et al. 2013
Kleinkrebse	Daphnia magna	Geometrischer Mittelwert (Immobilisierung)		48	h	EC50		<u>258</u>	μg/L		
Kleinkrebse	Thamnocephalus platyrus	Mortalität		24	h	LC50	=	470	μg/L	4	Kim et al. 2009
Kleinkrebse	Neocaridina denticulate sinensis	Mortalität	8	96	h	LC50	=	772	μg/L	4	Wang et al. 2013
Insekten	Chironomus plumosus	Larvenmortalität	8	96	h	EC50	=	2890	μg/L	4	Wang et al. 2013
Insekten	Chironomus tentans	Mortalität	8.4	10	d	LC50	=	400	μg/L	3	Dussault et al. 2008
Insekten	Chironomus tentans	Wachstum	8.4	10	d	EC50	=	280	μg/L	3	Dussault et al. 2008
Cnidaria	Hydra magnipapillata	Regenrationskapazität		96	h	EC50	=	< 1000	μg/L	3	Park & Yeo 2012
Annelida	Limnodrilus hoffmeisteri	Mortalität	8	96	h	LC50	=	2046	μg/L	4	Wang et al. 2013
Fische	Carassius auratus	Mortalität	8	96	h	LC50	=	1839	μg/L	4	Wang et al. 2013
Fische	Carassius auratus	Mortalität		96	h	LC50	=	560	μg/L	4	Ciba chem. Corp. 1996
Fische	Danio rerio	Mortalität	7.8-8.3	96	h	LC50	=	540	μg/L	1	European Chemicals Bureau 2004 zitiert in NICNAS 2009
Fische	Danio rerio	Mortalität	7	96	h	LC50	=	340	μg/L	2	Oliveira et aal. 2009
Fische	Danio rerio	Mortalität	6.5-8.5	96	h	LC50	=	300	μg/L	2	Busquet et al. 2014

		EFFEKTDA	TENRE	CHER	ECHE						
Sammelbezeichnung	Organismus	Endpunkt	pH Wert (Start)/Salinität	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Validität	Literaturquelle
Fische	Danio rerio	Geometrischer Mittelwert (Mortalität)		96	h	LC50	=	319	μg/L		
Fische	Lepomis macrochirus	Mortalität		96	h	LC50	=	<u>370</u>	μg/L	2	Orvos et al. 2002 sowie ECHA 2015
Fische	Lepomis macrochirus	Mortalität		48	h	LC50	=	410	μg/L	2	Orvos et al. 2002
Fische	Lepomis macrochirus	Mortalität		24	h	LC50	=	440	μg/L	2	Orvos et al. 2002
Fische	Leuciscus idus	Mortalität		96	h	LC50	=	560	μg/L	4	European Chemicals Bureau 2004 zitiert in NICNAS 2009
Fische	Misgurnus anguillicaudatus	Mortalität	8	96	h	LC50	=	45	μg/L	4	Wang et al. 2013
Fische	Oncorhynchus mykiss	Mortalität		96	h	LC50	=	<u>350</u>	μg/L	2	European Chemicals Bureau 2004 zitiert in NICNAS 2009
Fische	Oryzias latipes	Mortalität		96	h	LC50	=	600	μg/L	4	Kim et al. 2009
Fische	Oryzias latipes	Mortalität		96	h	LC50	=	1700	μg/L	3	Nassef et al. 2010
Fische	Oryzias latipes	Mortalität		96	h	LC50	=	399	μg/L	2	Ishibashi et al. 2004
Fische	Oryzias latipes	Mortalität		96	h	LC50	=	210	μg/L	2	Tamura et al. 2013
Fische	Oryzias latipes	Geometrischer Mittelwert (Mortalität)		96	h	LC50	=	<u>289</u>	μg/L		
Fische	Oryzias latipes	Mortalität		48	h	LC50	=	352	μg/L	2	Foran et al. 2000
Fische	Pimephales promelas	Mortalität		96	h	LC50	=	260	μg/L	2	Orvos et al. 2002
Fische	Pimephales promelas	Mortalität		96	h	LC50	=	360	μg/L	2	Mayer und Ellersieck 1986 zitiert in NICNAS 2009
Fische	Pimephales promelas	Geometrischer Mittelwert (Mortalität)		96	h	LC50	=	306	μg/L	+-	2000
Fische	Pimephales prometas	Larvenmortalität (7d post-hatch)	7.69	7	d	LC50	=	190	μg/L	2	Fritsch et al. 2013
Fische	Pesudirasboa parva	Mortalität	8	96	h	LC50	=	71	μg/L	4	Wang et al. 2013
Fische	Tanichthys albonubes,	Mortalität	8	96	h	LC50	=	45	μg/L	4	Wang et al. 2013
Fische	Xyphosurus helleri	Fry Mortalität	7.5	96	h	LC50	=	1470	μg/L	4	Liang et al. 2013
Amphibien	Xenopus laevis	Larvenmortalität (Faber stage 49)		96	h	LC50	=	259	μg/L	2	Palenske et al. 2010

		EFFEKTDA	TENRE	CHER	ECHE						
Sammelbezeichnung	Organismus	Endpunkt	pH Wert (Start)/Salinität	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Validität	Literaturquelle
Amphibien	Xenopus laevis	Larvenmortalität (Faber stage 41)		96	h	LC50	=	343	μg/L	2	Palenske et al. 2010
Amphibien	Xenopus laevis	Larvenmortalität (Faber stage 54)		96	h	LC50	=	443	μg/L	2	Palenske et al. 2010
Amphibien	Xenopus laevis	Larvenmortalität (Faber stage 66)		96	h	LC50	=	664	μg/L	2	Palenske et al. 2010
Amphibien	Xenopus laevis	Larvenmortalität (Faber stage 66)		96	h	LC50	=	820	μg/L	4	Harada et al. 2008
Amphibien	Acris crepitans blanchardii	Larvenmortalität (Faber stage 30)		96	h	LC50	=	367	μg/L	2	Palenske et al. 2010
Amphibien	Bufo woodhousii woodhousii	Larvenmortalität (Faber stage 30)		96	h	LC50	=	<u>152</u>	μg/L	2	Palenske et al. 2010
Amphibien	Rana sphenocephala	Larvenmortalität (Faber stage 30)		96	h	LC50	=	<u>562</u>	μg/L	2	Palenske et al. 2010
Amphibien	Rana limnocharis	Larvenmortalität	8	96	h	LC50	=	518	μg/L	4	Wang et al. 2013
Protozoen	Tetrahymena pyriformis	Wachstum		96	h	EC50	=	210	μg/L	4	Harada et al. 2008
Protozoa	Tetrahymena thermophila	Wachstum		24	h	EC50	=	1063	μg/L	4	Gao et al. 2015
Rekombinant veränderte Hefen	Sacharomyces cerevisiae (rekombinant verändert mit dem menschlichen Öestrogenrezeptor α)	Bindung an den menschlichen Östrogenrezeptor		3	d	EC50	=	4.24	μg/L	2	Svobodova et al. 2009
			ffektdat	en marin				1	F-9-		
	T	arute E	IIIORIGAL	T III AI III			T				T
Bakterien	Vibrio fischeri	Lumineszenz	kA	15	min	EC50	=	53	μg/L	2	DeLorenzo et al. 2008
Bakterien	Vibrio fischeri	Bioluminszenz	7	15	min	EC50	=	150	μg/L	2	Tatarazako et al. 2004
Bakterien	Vibrio fischeri	Bioluminszenz	7	15	min	EC50	=	280	μg/L	2	Farre et al. 2008
Bakterien	Vibrio fischeri	Geometrischer Mittelwert (Bioluminszenz)		15	min	EC50	=	<u>131</u>	μg/L	2	
Bakterien	Vibrio fischeri	Lumineszenz	7.4-8.0	15	min	EC50	=	520	μg/L	4	Harada et al. 2008
Algen	Chaetocerus gracilis	Wachstumsrate		72	h	EC50	=	183	μg/L	4	McHenry et al. 2006
											DeLorenzo und Fleming 2008, DeLorenzo et al.
Algen	Dunaliella tertiolecta	Biomasse (Zelldichte)	kA	96	h	EC50	=	<u>3.55</u>	μg/L	2	2008
Algen	Nannochloropsis oculata	Wachstumsrate		72	h	EC50	=	165	μg/L	4	McHenry et al. 2006

		EFFEKTDA	TENRE	CHERI	ECHE						
Sammelbezeichnung	Organismus	Endpunkt	pH Wert (Start)/Salinität	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Validität	Literaturquelle
Algen	Nitzschia palea	Photosyntheseaktivität		24	h	EC50	=	390	μg/L		Franz et al. 2008
Algen	Nitzschia palea	Photosyntheseaktivität (Modellierung)		"infinit e"		EC50	=	324	μg/L		Franz et al. 2008
Algen	Rhodomonas salina	Wachstumsrate		72	h	EC50	=	168	μg/L	4	McHenry et al. 2006
Algen	Tetraselmis chuii	Wachstumsrate		72	h	EC50	=	83.8	μg/L	4	McHenry et al. 2006
Algen	Diatomeen Gemeinschaft	Mortalität	7.7-7.9	48	h	LC50	=	560	μg/L	4	Morin et al. 2010
Algen	Skeletonema costatum	Wachstumsrate	kA	96	h	EC25	>	66	μg/L	1	Orvos et al. 2002
Algen	Skeletonema costatum	Wachstumsrate	kA	96	h	EC50	>	66	μg/L	1	Orvos et al. 2002
Kleinkrebse	Palaemonetes pugio	Larven-Mortalität	kA	96	h	LC50	=	<u>154</u>	μg/L	2	DeLorenzo et al. 2008
Kleinkrebse	Palaemonetes pugio	Mortalität adulter Tiere	kA	96	h	LC50	=	305	μg/L	2	DeLorenzo et al. 2008 DeLorenzo et al.
Kleinkrebse	Palaemonetes pugio	Embryo-Mortalität	kA	96	h	LC50	=	651	μg/L	2	2008
Kleinkrebse	Americamysis bahia	Mortalität		96	h	LC50	=	74.3	μg/L	2	Perron et al. 2012
Kleinkrebse	Ampelisca abdita	Mortalität		96	h	LC50	=	<u>73.4</u>	μg/L	2	Perron et al. 2012
Kleinkrebse	Artemia salina	Mortalität	8	24	h	LC50	=	171	μg/L	3	Xu et al. 2015
Mollusken	Perna perna	Larvenentwicklung	7.87- 8.03	48	h	EC50	=	135	μg/L	4	Cortez et al. 2012
Echinodermata	Psamechinus miliaris	Larvenentwicklung (Experiment A)		72	h	EC50	=	78.2	μg/L	3	Anselmo et al. 2011
Echinodermata	Psamechinus miliaris	Larvenentwicklung (Experiment B)		72	h	EC50	=	89.2	μg/L	3	Anselmo et al. 2011
Echinodermata	Strongylocentrotus nudus	Larvenentwicklung		72	h	EC50	=	286	μg/L	3	Hwang et al. 2014
		subchronisch	e und ch	ronische	Daten	1			!		!
											Orvos et al. 2002 vermutlich bezogen auf Drottar und
Cyanobakterien	Anabaena flos aquae	Biomasse (Zellzahl)	7.5	96	h	EC10	=	0.97	μg/L	1	Krueger 1998
Cyanobakterien	Anabaena flos aquae	Biomasse (Zellzahl)	7.4-7.8	96	h	EC10	=	0.97	μg/L	1	Drottar und Krueger 1998
Cyanobakterien	Anabaena flos aquae	Wachstumsrate (neu ausgewertet)	7.4-7.8	72	h	EC10	=	1.98	μg/L	1	Drottar und Krueger

		EFFEKTDA	TENRE	CHERI	ECHE						
Sammelbezeichnung	Organismus	Endpunkt	pH Wert (Start)/Salinität	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Validität	Literaturquelle
											1998
Cyanobakterien	Anabaena flos aquae	Biomasse (Zellzahl)		96	h	NOEC	=	0.81	μg/L	1	Orvos et al. 2002 vermutlich bezogen auf Drottar und Krueger 1998
Gyanobakterien	Anabacha noo aqaac	Diomasso (Ecileani)			"	11020		0.01	pg/=	+ -	Drottar und Krueger
Cyanobakterien	Anabaena flos aquae	Wachstumsrate (neu ausgewertet)	7.4-7.8	96	h	NOEC	=	0.81	μg/L	1	1998
											Drottar und Krueger
Cyanobakterien	Anabaena flos aquae	Wachstumsrate (neu ausgewertet)	7.4-7.8	72	h	NOEC	=	1.7	μg/L	1	1998
Cyanobakterien	Anabaena flos-aquae	Wachstumsrate (neu ausgewertet)	7.3-7.5	96	h	EC10	=	0.6	μg/L	2	Carolina Ecotox Inc. 1997
Cyanobakterien	Anabaena flos aquae	Wachstumsrate (neu ausgewertet)	7.4-7.8	96	h	EC10	=	1.6	μg/L	1	Drottar und Krueger 1998
Cyanobakterien	Anabaena flos aquae	Geometrischer Mittelwert (Wachstumsrate 96h)		96	h	EC10	=	0.98	μg/L		
		Wachstumsrate asexuelle									
Algen	Closterium ehrenbergii	Reproduktion	7.5	120	h	NOEC	=	<u>250</u>	μg/L	2	Ciniglia et al. 2005
Algen	Desmodesmus subspicatus	Biomasse (Zellzahl)	7.5-7.8	72	h	NOEC	=	0.5	μg/L	1	Orvos et al. 2002
Algen	Desmodesmus subspicatus	Wachstumsrate (Zellzahl)	7.5-7.8	72	h	NOEC	=	0.5	μg/L	1	Orvos et al. 2002
Algen	Desmodesmus subspicatus (Scenedesmus subspicatus)	Biomasse (bezogen auf die gemessenen Konzentrationen)	k.A.	96	h	NOEC	=	0.5	μg/L	2	Anonymus 1997 zitiert in ECHA 2015
Algen	Desmodesmus subspicatus (Scenedesmus subspicatus)	Wachstumsrate (neu ausgewertet)	7.5-9.5	72	h	EC10	=	0.46	μg/L	2	Drottar & Krueger 1999
Algen	Desmodesmus subspicatus	Wachstumsrate (neu ausgewertet)	8.0- 10.3	72	h	EC10	=	1.31	μg/L	1	Wüthrich 1995
Algen	Desmodesmus	Wachstumsrate		72	h	EC10	=	0.776	μg/L	2	


		EFFEKTDA	TENRE	CHER	ECHE						
Sammelbezeichnung	Organismus	Endpunkt	pH Wert (Start)/Salinität	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Validität	Literaturquelle
	subspicatus										
Algen	Desmodesmus subspicatus	Biomasse (Zellzahl)	7.5-7.8	96	h	NOEC	=	0.69	μg/L	1	Orvos et al. 2002
Algen	Navicula pelliculosa	Wachstumsrate		96	h	EC10	=	12.66	μg/L	2	Carolina Ecotox Inc. 1997
Algen	Nitschia palea	Photosyntheseaktivität		24	h	EC10	=	<u>219</u>	μg/L	2	
Algen	Pseudokirchneriella subcapitata	Biomass (Zellzahl)	7.5-7.8	72	h	EC10	=	2.7	μg/L	3	Tatarazako et al. 2004
Algen	Pseudokirchneriella subcapitata	Wachstum (Yield gemäss OECD 201)	7.7-8.6	72	h	LOEC	=	0.4	μg/L	2	Yang et al. 2008
Algen	Pseudokirchneriella subcapitata	Wachstum (Yield gemäss OECD 201)	7.7-8.6	72	h	NOEC	=	0.2	μg/L	2	Yang et al. 2008
Algen	Pseudokirchneriella subcapitata	Wachstumsrate (neu ausgewertet)	7.3-7.5	96	h	EC10	=	1.81	μg/L	2	Carolina Ecotox Inc. 1997
Algen	Pseudokirchneriella subcapitata	Wachstumsrate	k.A.	72	h	NOEC	=	0.53	μg/L	2	Tamura et al. 2013
Algen	Pseudokirchneriella subcapitata	Geometrischer Mittelwert (Wachstumsrate)						0.98			
Algen	Pseudokirchneriella subcapitata	Wachstum (Fläche unter der Kurve)	7.5	96	h	NOEC	=	8.3	μg/L	4	Harada et al. 2008
Algen	Scenedemus vacuolatus	Reproduktion	6.8	24	h	EC10	=	1.08	μg/L	2	Franz et al. 2008
Gefässpflanzen	Lemna gibba	Wachstumsrate		7	d	NOEC	-	10	μg/L	2	Fulton et al. 2009
Gefässpflanzen	Lemna gibba	Yield (Frondzahl)	7.71- 8.61	7	d	NOEC	=	12.5	μg/L	2	Carolina Ecotox Inc. 1997
Gefässpflanzen	Lemna gibba							<u>11.2</u>			
Gefässpflanzen	Lemna minor	Wachstum (nach Autorenkommunikation)		6	d	EC10	=	3.16	μg/L	2	Küster et al. 2007
Kleinkrebse	Brachionus calyciflorus	Keine Angabe		48	h	NOEC	=	50	μg/L	4	Ferrari et al. 2002 zitiert in in NICNAS 2009

	EFFEKTDATENRECHERECHE										
Sammelbezeichnung	Organismus	Endpunkt	pH Wert (Start)/Salinität	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Validität	Literaturquelle
Kleinkrebse	Ceriodaphnia dubia	Reproduktion	7-7.5	7	d	EC25	=	170	μg/L	2	Tatarazako et al. 2004
Kleinkrebse	Ceriodaphnia dubia	Reproduktion	7-7.5	7	d	EC50	=	220	μg/L	2	Tatarazako et al. 2004
Kleinkrebse	Ceriodaphnia dubia	Reproduktion	8.5	7	d	NOEC	=	182	μg/L	1	Orvos et al. 2002 & Procter & Gamble 1992
Kleinkrebse	Ceriodaphnia dubia	Reproduktion	7	7	d	NOEC	=	6	μg/L	1	Orvos et al. 2002 & Procter & Gamble 1992
Kleinkrebse	Ceriodaphnia dubia	Reproduktion	k.A.	8	d	NOEC	=	30	μg/L	2	Tamura et al. 2013
Kleinkrebse	Ceriodaphnia dubia	Reproduktion	7-7.5	7	d	EC10	=	132	μg/L	2	Tatarazako et al. 2004
Kleinkrebse	Ceriodaphnia dubia	Geometrischer Mittelwert (Reproduktion)						13.4	μg/L		
Kleinkrebse	Ceriodaphnia dubia	Reproduktion		7	d	NOEC	=	4	μg/L	4	Ferrari et al. 2002 zitiert in NICNAS 2009
Kleinkrebse	Daphnia magna	Reproduktion	8.2-8.6	21	d	NOEC	=	40	μg/L	3	Orvos et al. 2002 & Ciba-Geigy 1990
Kleinkrebse	Daphnia magna	Reproduktion ("total number of spawning")	k.A.	21	d	EC10	=	29	μg/L	2	Wang et al. 2013
Kleinkrebse	Daphnia magna	Reproduktion	7.5	21	d	EC10	=	9	μg/L	2	Peng et al. 2013
Kleinkrebse	Daphnia magna	Geometrischer Mittelwert (Reproduktion)				EC10	=	16.2	μg/L		
Kleinkrebse	Daphnia magna	Überleben		21	d	NOEC	=	200	μg/L	4	Brausch und Rand 2011
Kleinkrebse	Daphnia magna	Geschlechterverhältnis		30	d	NOEC	=	1	μg/L	3	Flaherty und Dodson 2005
Kleinkrebse	Daphnia magna	Reproduktion	k.A.	21	d	NOEC	=	13.7	μg/L	3	Silva et al. 2015

	EFFEKTDATENRECHERECHE										
Sammelbezeichnung	Organismus	Endpunkt	pH Wert (Start)/Salinität	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Validität	Literaturquelle
Kleinkrebse	Hyalella azteca	Mortalität		10	d	LC10	=	<u>5</u>	μg/L	2	Dussault et al. 2008
Kleinkrebse	Hyalella azteca	Mortalität		10	d	LC50	=	200	μg/L	2	Dussault et al. 2008
Molluska	Physa acuta	Wachstumsrate		42	d	NOEC	≥	10	μg/L	2	Brown et al. 2012
		Early Life Stage Test unter									Tatarazako et al.
Fische	Danio rerio	Hungerbedingungen (Schlüpfrate)		9	d	IC25	=	160	μg/L	3	2004
		Early Life Stage Test unter									Tatarazako et al.
Fische	Danio rerio	Hungerbedingungen (Schlüpfrate)		9	d	IC50	=	220	μg/L	3	2004
Fische	Danio rerio	Early Life Stage Test (Schlüpfrate)	8.0	6	d	NOEC	=	160	μg/L	2	Macedo et al. 2017
		Early Life Stage Test unter									Tatarazako et al.
Fische	Danio rerio	Hungerbedingungen (Schlüpfrate)		9	d	LC10	=	150	μg/L	2	2004
Fische	Danio rerio	Early Life Stage Test		9	d	NOEC	=	<u>26</u>	μg/L	2	Tamura et al. 2013
Fische	Danio rerio	Mortalität		10	d	NOEC	=	200	μg/L	4	Ferrari et al. 2002 zitiert in NICNAS 2009
Fische	Oncorhynchus mykiss	ELS (Mortalität)	8.2	61	d	NOEC	=	<u>34.1</u>	μg/L	1	Orvos et al. 2002 & Unilever 1996
Fische	Oryzias latipes	ELS mit Hungern (Schlüpfrate)		14	d	EC50	=	400	μg/L	3	Tatarazako et al. 2004
Fische	Oryzias latipes	ELS mit Hungern (Schlüpfrate)		14	d	EC10	=	160	μg/L	2	Tatarazako et al. 2004
Fische	Oryzias latipes	ELS (Schlüpfrate)		14	d	NOEC	=	156	μg/L	2	Ishibashi et al. 2004
Fische	Oryzias latipes	Geometrischer Mittelwert (Schlüpfrate)		14	d		=	158	μg/L		
Fische	Oryzias latipes	ELS (Embryo-Mortalität)		96	h	LC50	=	399	μg/L	2	Ishibashi et al. 2004
Fische	Oryzias latipes	ELS (24h alte Larven-Mortalität)		96	h	LC50	=	602	μg/L	2	Ishibashi et al. 2004
Fische	Pimephales promelas	Larvenmortalität (7d post-hatch)	7.69	7	d	NOEC	=	<u>75</u>	μg/L	2	Fritsch et al. 2013
Insekten	Chironomus tentans	Mortalität	<u> </u>	10	d	LC10	=	20	μg/L	2	Dussault et al. 2008
Insekten	Chironomus tentans	Wachstum		10	d	EC10	=	80	μg/L	2	Dussault et al. 2008
Insekten	Chironomus riparius	Überleben und Schlupfrate		28	d	NOEC	=	440	μg/L	2	Memmert 2006
Amphibien	Xenopus laevis	thyroid mediierte Metamorphose		21	d	NOEC	≥	50	μg/L	2	Fort et al. 2010

		EFFEKTDA	TENRE	CHER	ECHE						
Sammelbezeichnung	Organismus	Endpunkt	pH Wert (Start)/Salinität	Dauer	Dimension	Parameter	Operator	Wert	Einheit	Validität	Literaturquelle
Amphibien	Xenopus laevis	Embryoteratogenität	7.4-8.0	96	h	EC50	=	820	μg/L	4	Harada et al. 2008
Amphibien	Xenopus laevis	Entwickung				EC10	>	29.6	μg/L	4	Fort et al. 2010&2011
Amphibien	Rana catesbeiana	Genexpression	7.4-8	4	d	NOEC	<	0.03	μg/L	2	Veldhoen et al. 2006
Amphibien	Rana catesbeiana	Thyroididal modulierte Metamorphose	7.4- 8	4	d	NOEC	<	0.15	μg/L	2	Veldhoen et al. 2006
Amphibien	Rana catesbeiana	thyroid abhängiger Einfluss auf das Körpergewicht	7.7-8.6	4	d	NOEC	<	0.15	μg/L	2	Veldhoen et al. 2006
Amphibien	Rana catesbeiana	thyroid abhängiger Einfluss auf das Wachstum der hinteren Extremitäten	7.7-8.6	4	d	NOEC	<	0.15	μg/L	2	Veldhoen et al. 2006
		subchronische u	nd chror	nische Da	aten marin						
Algen	Dunaliella tertiolecta	Biomasse (Zelldichte)	kA	96	h	NOEC	=	1.6	μg/L	2	DeLorenzo und Fleming 2008, DeLorenzo et al. 2008
Algen	Skeletonema costatum	Biomasse		96	h	NOEC	=	12.6	μg/L	1	Carolina Ecotox Inc. 1997 zitiert in NICNAS 2009
Algen	Skeletonema costatum	Wachstumsrate		96	h	EC10	>	66	μg/L	2	Carolina Ecotox Inc. 1997
Echinodermata	Psammechinus miliaris	Larvenentwicklung		16	d	NOEC	=	72	μg/L	3	Anselmo et al. 2011
Echinodermata	Strongylocentrotus nudus	Larvenentwicklung		72	h	NOEC	=	145	μg/L	3	Hwang et al. 2014
Echinodermata	Paracentrotus lividus	Larvenentwicklung (Fehlbildungen)		48	h	NOEC	=	<u>40</u>	μg/L	2	Macedo et al. 2017

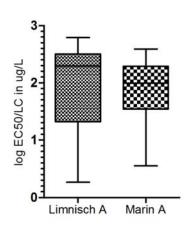

5 Graphische Darstellung der Effektdaten

Abb.1: Kurzzeit (KZ) und Langzzeit (LZ)-Effektdaten von Triclosan für aquatische Organismen. Bei den Langzeit-Tests mit Bakterien wurden nur Cyanobakterien berücksichtigt. Die Standardabweichung der logarhythmierten LC/EC50 Werte beträgt 0.8.

5.1 Vergleich marine/limnische Organismen

Für die akuten Daten gibt es keine signifikanten Unterschiede in der Empfindlichkeit mariner und limnischer Organismen (Abbildung 2). Für die akuten Daten ist ein statistischer Vergleich der Empfindlichkeiten von limnischen und marinen Organismen nicht möglich aufgrund der begrenzten Anzahl valider Effektwerte für marine Organismen. Da es keine Hinweise auf einen Unterschied in der Sensitivität gibt, werden beide Datensätze für die folgende EQS-Ableitung kombiniert.

Table Analyzed	Transform of Triclosan akut
Column A	Limnisch A
VS	vs
Column B	Marin A
Mann Whitney test	
P value	0.7139
Exact or approximate P value?	Gaussian Approximation
P value summary	ns
Are medians signif. different? (P < 0.05)	No
One- or two-tailed P value?	Two-tailed
Sum of ranks in column A,B	231,69
Mann-Whitney U	48.00

Abb.2: Vergleich der Empfindlichkeit mariner und limnischer Organismen bezüglich der akuten Toxizität.

6 Herleitung der EQS

Um chronische und akute Qualitätsziele herzuleiten, kann die Sicherheitsfaktormethode (AF-Methode) auf Basis von Kurzzeit- und Langzeiteffektdaten angewendet werden. Dabei wird mit dem tiefsten chronischen Datenpunkt ein AA-EQS (Annual-Average-Environmental-Quality-Standard) und mit dem tiefsten akuten Datenpunkt ein MAC-EQS (Maximum-Acceptable-Concentration-Environmental-Quality-Standard) abgeleitet. Wenn der Datensatz umfassend genug ist, können diese EQS zusätzlich mittels einer Speziessensitivitätsverteilung (SSD) bestimmt werden. Valide Mikro-/Mesokosmosstudien dienen einerseits zur Verfeinerung des AF für SSDs. Andererseits können sie auch direkt zur Bestimmung eines EQS verwendet werden.

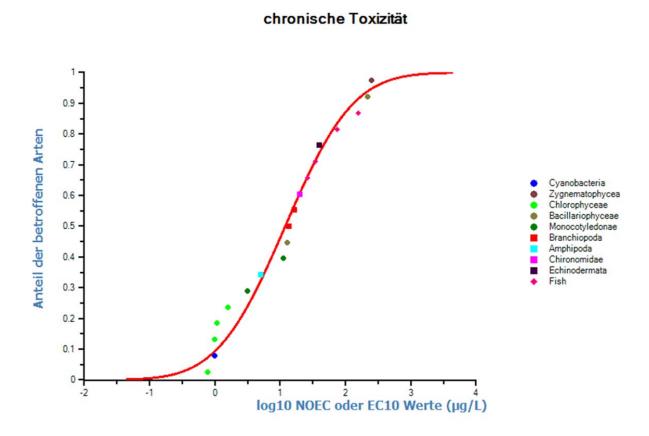
7 Chronische Toxizität

7.1 AA-EQS Herleitung mit AF-Methode

Tabelle 3 zeigt die kritischen Langzeiteffektwerte für Triclosan.

Tab.3: Übersicht zu den kritischen Toxizitätswerten für Wasserorganismen aus längerfristigen Untersuchungen für Triclosan.

Gruppe	Spezies	Wert	Konz.	Literatur
			in μg/L	
Algen/Wasser-	Desmodesmus	EC10	0.776	Drottar &
pflanzen	subspicatus			Krueger 1999
	(geometrischer			&
	Mittelwert)			Wüthrich
				1995
Krebstiere	Ceriodaphnia dubia	NOEC	13.4	Tamura et al.
(Daphnien)	(geometrischer			2013&
	Mittelwert)			Tatarazako et
				al. 2004
Fische	Danio rerio	NOEC	26	Tamura et al.
				2013
	Sonstige		L	
Krebstiere	Hyalella azteca	LC10	5	Dussault et
				al. 2008
Insekten	Chironomus tentans	LC10	20	Dussault et
				al. 2008


Es liegen NOEC-Werte für die Organismengruppen der Algen, Kleinkrebse, Fische vor. Der empfindlichste belastbare Endpunkt liegt bei dem von 0.776 µg/L für die Grünalge *Desmodesmus subspicatus*. Nach der AF-Methode ergibt sich daraus ein Langzeit-Qualitätskriterium von:

 $AA-EQS = 0.776 \mu g/L / 10 = 0.08 \mu g/L = 80 ng/L$

7.2 AA-EQS mit SSD-Methode

Es sind genügend verlässliche akute Daten vorhanden um den AA-EQS mithilfe der SSD-Methode bestimmen zu können. Es sind alle 8 geforderten taxonomischen Gruppen im

Datensatz enthalten. In Abbildung 3 ist die SSD für die chronischen NOEC oder EC10 Werte aller Arten dargestellt. Die zugrundeliegenden Daten sind in Tabelle 4 zusammengefasst.

Abb.3: SSD der chronischen Toxizitätswerte für Triclosan. Die zugrundeliegenden Daten sind in Tabelle 4 zusammengetragen. Die Daten sind normalverteilt (die detaillierten Analyseergebnisse befinden sich im Anhang). Der HC05 beträgt $0.514~\mu g/L$ (lower limit – upper limit: $0.125-1.34~\mu g/L$).

Im Datensatz sind 19 Arten enthalten. Es ergibt sich ein HC05 von $0.514~\mu g/L$ (lower limit – upper limit: $0.125-1.34~\mu g/L$). Die untere Grenze des HC05 liegt um den Faktor 5 tiefer als der HC05.

Tab.4: Liste der relevanten und verlässlichen chronischen NOEC oder EC10 Werte für Wasserorganismen gegenüber Triclosan.

Daten	Toxicity	Artname	Taxonomische Gruppe
Nummer	data		
1	0.776	Desmosdesmus subspicatus	Algen (Chlorophyceae)
2	0.98	Anabaena flos-aquae	Bakterien (Cyanobacteria)
3	0.98	Pseudokirchneriella subcapitata	Algen (Chlorophyceae)
4	1.08	Scenedesmus vacuolatus	Algen (Chlorophyceae)
5	1.6	Dunaliella tertiolecta	Algen (Chlorophyceae)
6	3.16	Lemna minor	Höhere Pflanzen
			(Monocotyledonae)
7	5	Hyalella azteca	Kleinkrebse (Amphipoda)
8	11.2	Lemna gibba	Höhere Pflanzen
			(Monocotyledonae)
9	12.66	Navicula pelliculosa	Algen (Bacillariophyceae)
10	13.4	Ceriodaphnia dubia	Kleinkrebse (Branchiopoda)
11	16.2	Daphnia magna	Kleinkrebse (Branchiopoda)
12	20	Chironomus tentans	Insekten (Chironomidae)
13	26	Danio rerio	Fische (Cyprinidae)
14	34.1	Oncorhynchus mykiss	Fische (Salmonidae)
15	40	Paracentrotus lividus	Stachelhäuter (Echinodermata)
16	75	Pimephales promelas	Fische (Cyprinidae)
17	158	Oryzias latipes	Fische (Adrianichthyidae)
18	219	Nitschia palea	Algen (Bacillariophyceae)
19	250	Closterium ehrenbergii	Algen (Zygnematophycea)

In den vergangenen Jahren wurden zwei SSDs für die chronische Toxizität von Triclosan publiziert (Capdevielle et al. 2008 und Lyndall et al. 2010). Es wurden dabei HC05 Werte abgeleitet, die höher liegen: 1.55 μ g/L (Capdevielle et al. 2008) und 0.8 μ g/L (Lyndall et al. 2010). In beiden Arbeiten wurde darauf hingewiesen, dass die zugrundeliegenden Daten nicht normalverteilt sind, sondern sich mehrere Verteilungen im Datensatz befinden. Lyndall

et al. (2010) schreiben, dass die empfindlichsten Arten zu den Algen und Cyanobakterien gehören. Ein ähnliches Bild ergibt sich hier. In Abbildung 3 kann man sehen, dass Grünalgen und Cyanobakterien die empfindlichsten taxonomischen Gruppen sind. Höhere Pflanzen (Monocotyledonae) sind etwas unempfindlicher und andere Algengruppen (Bacillariophycea und Zygnematophycea) sogar wesentlich unempfindlicher als Grünalgen und Cyanobakterien. Obwohl die Daten aus der SSD in Abbildung 3 normalverteilt ist, sollte man idealerweise eine SSD nur für Grünalgen und Cyanobakterien erstellen. Dies ist jedoch nicht möglich, da nur für 5 Arten Daten vorhanden sind. Eine SSD für alle Pflanzen und Cyanobakterien ist nicht normalverteilt.

Unter Berücksichtigung der Unsicherheit um den HC05 und der empfindlicher erscheinenden Grünalgen und Cyanobakterien wird ein AF von 5 gewählt. Damit ergibt sich folgender AA-EQS:

AA-EQS (SSD) =
$$0.514 \mu g/L / 5 = 0.103 \mu g/L = 100 ng/L$$

7.3 AA-EQS aus Mikro-/Mesokosmosstudien

Nietch et al. (2013) haben Triclosan in den Konzentrationen 0.1, 0.5, 1, 5, und 10 μg/L in der "Environmental Protection Agency (USEPA) Experimental Stream Facility" getestet. Das Ziel der Studie war, Auswirkungen von Triclosan auf die benthische Lebensgemeinschaft in Bächen zu untersuchen. Das Testsystem war daher eine Fliessgewässerrinne in der die Triclosan-Testlösungen jeden zweiten Tag erneuert wurden. Die Studie ging über 56 Tage. Für zwei untersuchte Parameter (Chlorophyll a des Periphytons (erhöht) und Bakterienzelldichte im Periphyton (erhöht)) lag der NOEC unterhalb der tiefsten getesteten Konzentration von 0.1 µg/L. Daher kann kein AA-EQS mittels der Mesokosmenmethode hergeleitet werden. Ein NOEC von 0.1 µg/ wurde für Triclosanresistenz des Periphyton, für die "principle response curve" Periphytonzusammensetzung und für die Ostracodendichte (erniedrigt) gemessen. Es ist zu beachten, dass das Periphyton zu 95% aus Bacillariophyceen bestand, einer Algengruppe, die in der SSD als deutlich weniger empfindlich aufgefallen ist. Die Studie ist daher nicht ideal zur Herleitung des AA-EQS für Triclosan. Insgesamt zeigen die Ergebnisse der Studie, dass der AA-EQS nicht höher als 0.1 µg/L sein sollte.

7.4 AA-EQS Schlussfolgerung

Tabelle 5 gibt einen Überblick zu den mit den 3 unterschiedlichen Methoden hergeleiteten AA-EQS Werten.

Tab.5: Übersicht über die mit den drei Methoden hergeleiteten MAC-EQS.

Methode	Verwendeter	Wert (ng/L)	
	Sicherheitsfaktor		
AA-EQS (AF)	10	80	
AA-EQS (SSD)	5	100	
AA-EQS (Mesokosmen)	Nicht möglich		
Finaler AA-EQS	5	100	

Aufgrund der höheren Robustheit wir der mit der SSD-Methode hergeleitete AA-EQS als finaler Wert ausgewählt. Die Mesokosmenstudie von Nietch et al. (2013) unterstützt die Wahl des AF von 5.

8 Akute Toxizität

8.1 MAC-EQS Herleitung mit AF-Methode

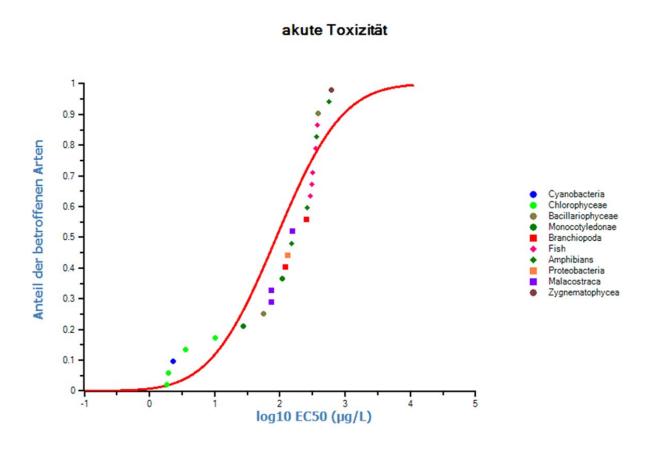
Es liegen EC50-Werte für die Organismengruppen der Bakterien, Algen, höheren Pflanzen, Kleinkrebse, Rotifera, Fische und Amphibien vor (Tab 6). Triclosan muss nach UN (2015) als sehr giftig eingestuft werden (Tab 7).

Tab. 6: Übersicht der kritischen akuten Toxizitätswerte für Wasserorganismen für Triclosan.

Gruppe	Spezies	Wert	Konz.	Literatur
			In μg/L	
Algen/	Scenedesmus vacuolatus	EC50	1.85	Franz et al. 2008
Wasserpflanzen				
Kleinkrebse	Ceriodaphnia dubia	EC50	120	DeLorenzo et al. 2008
(Daphnien)				
Fische	Oryzias latipes	LC50	289	Ishibashi et al. 2004 &
				Tamura et al. 2013
				(geometrischer
				Mittelwert)
	Sonstig	е	•	
Amphibien	Bufo woodhousii	EC50	152	Palenske et al. 2010
	woodhousii			
Kleinkrebse	Ampelisca abdita	EC50	73.4	Perron et. al. 2012
Höhere Pflanzen	Lemna minor	EC50	27.5	Küster et al. 2007
Cyanobakterien	Anabaena flos-aquae	EC50	2.51	Carolina Ecotox Inc.
				1997 &
				Drottar und Krüger
				1998
				(geometrischer
				Mittelwert)
Rotifera	Plationus patulus	EC50	320	Martinez-Gomez et al.
				2015
Bakterien	Vibrio fischeri	EC50	131	DeLorenzo et al. 2008,
				Tatarazako et al. 2004
				&
				Farre et al. 2008
				(geometrischer
				Mittelwert)

Tabelle 7: Risikoklassierung der akuten aquatischen Toxizität anhand der niedrigsten gemessenen EC50-Werte (UN 2015).

Risikoklasse	Niedrigster EC50- Wert	Erreichter Wert
nicht eingestuft	>100 mg/L	
3 (schädlich)	>10 mg/L; <100mg/L	
2 (giftig)	<10 mg/L;>1mg/L	
1 (sehr giftig)	< 1mg/L	х


Um Kurzzeit-Qualitätskriterien (MAC-EQS) herzuleiten, kann die AF-Methode auf der Datenbasis von akuten Toxizitätsdaten verwendet werden. Dafür müssen mindestens 3 valide EC50-Kurzzeittestergebnisse von Vertretern der 3 trophischen Ebenen (Fische, Krebstiere, Algen) vorhanden sein um einen Assessmentfaktor von 100 auf den EC50 der sensitivsten Studie verwenden zu können. Der AF kann gemäss TGD for EQS (Kommission der Europäischen Gemeinschaften 2010) auf 10 erniedrigt werden, wenn entweder die Standardabweichung der logarhytmierten EC50 Werte <0.5 ist, oder der Wirkmechanismus bekannt ist und ein Vertreter der empfindlichsten taxonomischen Gruppe im Effektdatensatz enthalten ist. Beides ist nicht der Fall. Einige Algen scheinen zwar sehr empfindlich auf Triclosan zu reagieren, aber der Wirkmechanismus in Algen ist noch nicht abschliessend geklärt. Eine weitere Unsicherheit bezüglich eines Vergleichs der Empfindlichkeiten unterschiedlicher taxonomischer Gruppen ist der pH-Wert bei dem getestet wurde. Da Triclosan einen pKa-Wert von 8.01 hat, ist nicht auszuschliessen, dass der Test-pH einen wesentlichen Einfluss auf die Toxizität haben kann. Dies wurde z.B. in der Studie von Orvos et al. 2002 zur Reproduktion von Ceriodaphnia dubia deutlich. Bei einem pH von 7 wurde ein NOEC von 6 µg/L beobachtet, während bei einem pH von 8.5 mit 182 μg/L ein deutlich höherer NOEC beobachtet wurde.

Es wird daher die Anwendung der AF-Methode mit einem AF von 100 vorgeschlagen, woraus sich folgendes Kurzzeit-Qualitätskriterium ableitet:

MAC-EQS_{AF} = $1.85 \mu g/L / 100 = 0.019 \mu g/L$

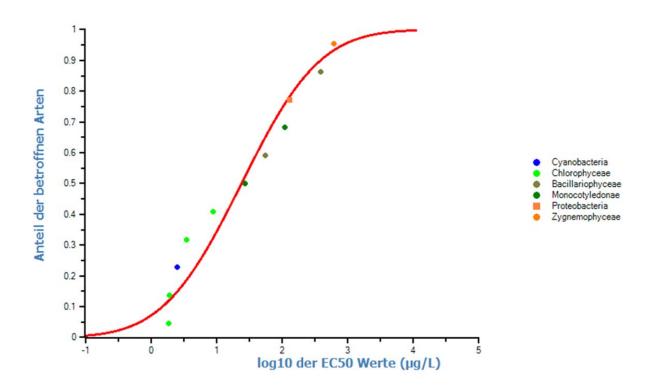
8.2 MAC-EQS mit SSD Methode

Es liegen für 26 Arten aus 7 der 8 geforderten taxonomischen Gruppen valide (verlässliche und relevante) Werte vor. Es fehlt ein valider Wert für Insekten. Allerdings gibt es eine nicht bewertbare Studie, die mit einem EC50 für *Chironomus plumosus* von 2890 µg/L darauf hindeutet, dass Insekten nicht zu den empfindlichen taxonomischen Gruppen gehören. Daher werden die taxonomischen Anforderungen an eine SSD als erfüllt angesehen. In Abbildung 4 ist die SSD für alle akuten Daten (Tabelle 8) dargestellt.

Abbildung 4: SSD basierend auf allen akuten Daten. Die zugrundeliegenden Daten (Tabelle 8) sind nicht normalverteilt. Der HC05 von 4.14 µg/L unterschätzt die Toxizität gegenüber Grünalgen (Chlorophyceae) und Cyanobakterien.

Die Daten sind nicht normalverteilt. Besonders empfindlich scheinen die Grünalgen (Chlorophyceae) und Cyanobakterien zu sein. Kieselalgen (Bacillariophyceae) und höhere Pflanzen (nur Vertreter der Monokotyledonae vorhanden) scheinen eher mit der zweiten Verteilung zu überlappen, die aus Invertebraten besteht. Fische und Amphibien (Wirbeltiere) scheinen die für Triclosan akut am wenigsten empfindliche taxonomische Gruppe zu bilden.

Tab.8: Liste der relevanten und verlässlichen akuten EC50-Werte für Wasserorganismen gegenüber Triclosan.


Daten	Toxicity	Artname	Taxonomische Gruppe
Nummer	data		
1	1.85	Scenedesmus vacuolatus	Algen (Chlorophyceae)
2	1.94	Desmodesmus subspicatus	Algen (Chlorophyceae)
3	2.28	Anabaena flos-aquae	Bakterien (Cyanobacteria)
4	3.55	Dunaliella tertiolecta - marin	Algen (Chlorophyceae)
5	10.1	Pseudokirchneriella subcapitata	Algen (Chlorophyceae)
6	27.5	Lemna minor	Höhere Pflanzen
			(Monocotyledonae)
7	56	Navicula pelliculosa	Algen (Bacillariophyceae)
8	73.4	Ampelisca abdita	Kleinkrebse (Malacostraca)
9	74.3	Americamysis bahia - marin	Kleinkrebse (Malacostraca)
10	108.9	Lemna gibba	Höhere Pflanzen
			(Monocotyledonae)
11	120	Ceriodaphnia dubia	Kleinkrebse (Branchiopoda)
12	131	Vibrio fischeri - marin	Bakterien (Proteobacteria)
13	152	Bufo woodhousi woodhousi	Amphibien
14	154	Palaeomonetes pugio - marin	Kleinkrebse (Malacostraca)
15	258	Daphnia magna	Kleinkrebse (Branchiopoda)
16	259	Xenopus laevis	Amphibien
17	289	Oryzias latipes	Fische (Adrianichthyidae)

18	306	Pimephales promelas	Fische (Cyprinidae)
19	319	Danio rerio	Fische (Cyprinidae)
20	320	Plationus patulus	Rotifera
21	350	Oncorhynchus mykiss	Fische (Salmonidae)
22	367	Acris crepitans	Amphibien
23	370	Lepomis macrochirus	Fische (Centrarchidae)
24	390	Nitzschia palea	Algen (Bacillariophyceae)
25	562	Rana spenocephala	Amphibien
26	620	Closterium ehrenbergii	Algen (Zygnematophycea)

Idealerweise würde man eine SSD nur für Grünalgen (Chlorophyceae) und Cyanobakterien machen. Da aber für diese Gruppen nur für 5 Arten valide Daten vorliegen, wurde eine SSD für Cyanobakterien, Bakterien und alle Algen gemacht. Diese ist normalverteilt und besteht aus validen Daten für 11 Arten (Abbildung 5).

Es ergibt sich ein HC05 von $0.611~\mu g/L$ (lower limit – upper limit: $0.054-2.52~\mu g/L$). Die untere Grenze des HC05 liegt um mehr als den Faktor 10 tiefer als der HC05.

akute Toxzität für Pflanzen und Bakterien

Abbildung 5: SSD basierend auf akuten Daten für Bakterien, Cyanobakterien, Algen und höheren Pflanzen. Die Daten sind normalverteilt (die detaillierten Analyseergebnisse befinden sich im Anhang). Der HC05 beträgt 0.611 μg/L (lower limit – upper limit: 0.054 – 2.52 μg/L).

Auch wenn die zugrundeliegenden Daten eher schlecht durch die Verteilungskurve beschrieben werden, wurde dieser HC05 zur MAC-EQS-Herleitung verwendet.

Für die Wahl des AF gibt das TGD for EQS (EC 2011) einen Standard-AF von 10 an. Dieser kann auf minimal 5 reduziert werden. Dabei sollen folgende Punkte berücksichtigt werden:

- Die Vielfalt und Repräsentativität der taxonomischen Gruppen im Datensatz, sowie das Ausmaß der repräsentierten Unterschiede in den Lebensformen, Fütterungsstrategien und trophischen Ebenen
- Kenntnisse über die Wirkungsweise der Chemikalie

- Statistische Unsicherheit der HC5-Schätzung, z. B. die Güte der Regression oder die Größe des Konfidenzintervalls um das 5. Perzentil
- Vergleiche zwischen Feld- und Mesokosmosstudien, soweit vorhanden, sowie zwischen HC5- und Mesokosmos- / Feldstudien zur Bewertung der Übereinstimmung zwischen Labor und Feld

Der AF von 10 wurde nicht reduziert, da nicht für alle geforderten taxonomischen Gruppen valide Daten vorliegen, die Wirkungsweise von Triclosan noch nicht abschliessend geklärt ist und das untere Konfidenzlimit des HC5 10-fach unter dem HC5 liegt. Es liegen auch keine validen Mesokosmosstudien vor.

MAC-EQS_{SSD} =
$$0.611 \mu g/L / 10 = 0.061 \mu g/L$$

8.3 MAC-EQS aus Mikro-/Mesokosmosstudien

Es liegen keine validen Mikro- oder Mesokosmosstudien vor.

8.4 MAC-EQS Schlussfolgerung

Tabelle 9: Übersicht über die mit den drei Methoden hergeleiteten MAC-EQS

Methode	Verwendeter	Wert (ng/L)
	Sicherheitsfaktor	
MAC-EQS (AF)	100	19
MAC-EQS (SSD)	10	61
MAC-EQS	Nicht möglich	
(Mesokosmen)		
Finaler MAC-EQS	10	61

Aufgrund der höheren Robustheit wir der mit der SSD-Methode hergeleitete MAC-EQS als finaler Wert ausgewählt.

Da der MAC-EQS unter dem AA-EQS liegt, wird er dem AA-EQS gleichgesetzt:

MAC-EQS = AA-EQS = $0.1 \mu g/L$

9 Bewertung des Bioakkumulationspotentials und der sekundären Intoxikation

Mit einem Wert von 4.8 liegt der log K_{OW} von Triclosan deutlich über 3. In einer Studie mit Larven verschiedener Froscharten (Palenske et al. 2010) wurden BKF-Werte von ca. 243 - 740 (*Bufo woodhousii woodhousii*), 76 - 238 (*Rana sphenocephala*) und 44 - 114 (*Xenopus laevis*) beobachtet. In einer Studie nach OECD 305 E konnte für den Zebrabärbling *Danio rerio* eine pH-Abhängigkeit des BKF gezeigt werden (Schettgen 2000). Erwartungsgemäss nimmt die Bioakkumulation in umweltrelevanten pH-Bereichen mit steigendem pH-Wert ab. Bei pH 6, wo Triclosan hauptsächlich in der ungeladenen Form vorliegt (pKa = 8.01), wurde ein BKF von 8700 gemessen, bei pH 7 ein Wert von 8150, bei pH 8 (ca. 50% ungeladene Form) ein Wert von 6350 und bei pH 9 ein Wert von 3700. Auch Orvos et al. (2002) haben BKF-Werte für Triclosan und *Danio rerio* (2000-5200) berichtet. Da diese bei pH 7.7-8.0 durchgeführt wurden (NICNAS 2009), lagen sie tiefer als der von Schettgen (2000) für pH 6 bestimmte. Da die EQS prinzipiell für alle Gewässer gelten sollen, wird der von Schettgen (2000) für pH 6 bestimmte BKF-Wert von 8700 für die weiteren Berechnungen verwendet.

Zusätzlich kann der BKF für Fische mit dem log K_{OW} von 4.8 in Anlehnung an das TGD for EQS (EC 2011) nach Veith et al. (1979) abgeschätzt werden:

 $\log BKFFisch = 0.85 \times \log K_{OW} - 0.70 = 3.38$

 $BKF_{Fisch} = 2399$

Nach dem TGD (EC 2011) for EQS kann diesem Wert ein Biomagnifikationsfaktor von 2 zugewiesen werden.

Der Biomagnifikationsfaktor bezogen auf die experimentellen Werte von Schettgen (2000) für pH 6-8 ergibt einen BMF von 10. Da der experimentelle Wert zu bevorzugen ist, wird im Weiteren mit einem BMF von 10 gerechnet.

In einem Review der NICNAS (2009) wurde ein NOAEL von 40 mg/kg/Tag aus einer 13-wöchigen Studie mit Mäusen ("repeated dose toxicity") als tiefster valider Wert eingestuft. Daraus kann nach dem TGD for EQS (EC 2011) mit dem Konvergierungsfaktor von 20 (für Ratten) der folgende NOECoral (in mg/kg Nahrung) extrapoliert werden.

$$NOEC_{oral} = NOAEL_{oral} * 20 = 800 \text{ mg/kg Nahrung}$$

Daraus ergibt sich ein EQS für sekundäre Intoxikation von

$$QS_{biota, sec\ pois} = \frac{Tox_{oral}}{AF_{oral}} = \frac{800\ mg/\ kg\ Nahrung}{30} = 26.7\ mg/\ kg\ Nahrung$$

Umgerechnet auf die Konzentration von Triclosan in Wasser ergibt sich ein EQS für sekundäre Intoxikation von

$$QS_{water} = \frac{QS_{biota}}{BKF*BMF} = \frac{26.7mg/kgNahrung}{8700l/kg*10} = 307ng/l$$

Da der AA-EQS mit 100 ng/L tiefer ist als der EQS für sekundäre Intoxikation, hat der recht niedrige Qualitätsstandard für das sekundäre Intoxikationsrisiko keinen Einfluss auf den AA-EQS.

10 Wichtige Abbauprodukte:

Triclosan kann durch UV-Bestrahlung zu dem Dioxin Dichlorodibenzo-*p*-dioxin (Lores et al. 2005) umgewandelt werden (Abbildung 2). Mit einem geschätzten log K_{OW} von 5.63 (US EPA 2008) ist dieses Umwandlungsprodukt noch bioverfügbarer als Triclosan selbst. Auch eine mögliche Gentoxizität kann für dieses Abbauprodukt nicht ausgeschlossen werden.

Abb.2: Bildung von Dichlorodibenzo-*p*-dioxin unter UV-Einfluss. Entnommen aus (Lores et al. 2005).

Bei der Chlorierung von Triclosan können auch Chloroform und andere chlorierte Nebenprodukte entstehen (Fiss et al. 2008). Da Triclosan eine hohe Expositionsrelevanz in der Umwelt hat (von der Ohe et al. 2011) scheinen zusätzliche Studien zu den Abbauprodukten notwendig.

11 Schutz der aquatischen Organismen

Der Effektdatensatz für Triclosan umfasst alle 3 trophischen Ebenen bei den Kurzzeit- und Langzeittoxizitäten. Algen stellen die empfindlichste Organismengruppe dar.

Der hergeleite MAC-EQS von $0.1~\mu g/L$ und der AA-EQS von ebenfalls $0.1~\mu g/L$ sollten einen ausreichenden Schutz für aquatische Organismen unterschiedlicher trophischer Ebenen bieten. Allerdings sollte die Ökotoxizität der Triclosan-Abbauprodukte noch näher untersucht werden.

12 Änderungen gegenüber der Version vom 30.05.2011

In Zusammenarbeit mit Henning Clausen (Dänische Umweltbehörde Miljöstyrelsen), Eric Verbruggen (niederländisches Institut RIVM), Sascha Pawlowski (BASF), Tim Barber und Jen Lyndall (Colgate Palmolive) sowie Andrea van der Veen (ECT beauftragt von BASF und Colgate Palmolive) wurden Toxizitätsdaten zusammengestellt und kommentiert.

Durch BASF und Colgate Palmolive wurden zahlreiche nicht öffentliche Studien zur Verfügung gestellt. Diese wurden, wo notwendig, von Andrea van der Veen neu ausgewertet. Dies vor allem um die Daten an die aktuelle OECD 201 Richtlinie anzupassen.

Die Studienbewertung basiert im Wesentlichen auf der Evaluation durch Henning Clausen, der ursprünglich der Hauptautor für die Erstellung eines Triclosan-Dossiers auf EU-Ebene war. Dieses Dossier wurde (noch) nicht als ein offizielles Dossier finalisiert, da Triclosan schliesslich nicht als prioritäre Substanz unter der Wasserrahmenrichtlinie angesehen wurde. Daher wurden einige Bewertungen geändert, vor allem, wenn damit die Vergleichbarkeit der Studienbewertung mit den Studienbewertungen aus anderen Dossiers des Oekotoxzentrums gewährleistet werden konnte.

Die Bewertung der sekundären Intoxikation wurde nicht angepasst. Eine Herleitung von QS zum Schutz vor der Konsumation von Fischereiprodukten, wie sie in der EU gemäss des TGD for EQS gemacht werden soll (EC 2011), ist in der Schweiz generell nicht Teil der Qualitätskriterienherleitung.

13 Referenzen (Stand der Literaturrecherche: 2015)

- ABC Laboratories Inc. (1990): Acute toxicity of D1063.01 to *Daphnia magna*. Analytical Bio-Chemistry Laboratories, Inc. Unpublished report, Proctor & Gamble Company. Zitiert in NICNAS 2009.
- Anselmo HMR, Koerting L, Devito S, van den Berg JHJ, Dubbeldam M, Kwadijk C, Murk AJ (2011) Early life developmental effects of marine persistent organic pollutants on the sea urchin *Psammechinus miliaris*. Ecotoxicology and Environmental Safety 74: 2182–2192
- Balmer M E, Poiger T, Droz C, Romanin K, Bergqvist P A, Müller M D, Buser H R (2004): Occurrence of Methyl Triclosan, a Transformation Product of the Bactericide Triclosan, in Fish from Various Lakes in Switzerland. Environmental Science and Technology 38(2):390-395.
- Boyd G R, Reemtsma H, Grimm D A, Mitra S (2003): Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. The Science of The Total Environment 311(1-3):135-149.
- Brausch J M, Rand G M (2011): A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 82(11):1518-1532.
- Brown J, Bernot MJ, Bernot RJ (2012) The influence of TCS on the growth and behavior of the freshwater snail, *Physa acuta*. Journal of Environmental Science and Health, Part A 47: 1626–1630
- Busquet F, Strecjer R, Rawlings JM, Belanger S, Braunbeck T, Carr GJ, Cenijn P, Fochtman P, Gourmelon A, Hübler N, Kleensang A, Knöbel M, Kussatz C, Legler J, Lillicrap A, Martinez-Jeronimo F, Polleichtner C, Rzodeczko H, Salinas E, Schneider KE, Scholz S, van den Brandhof E-J, van der Ven LTM, Walter-Rohde S, weight S, Witters H, Halder M (2014). OECD validation study to assess intra- and interlaboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Regulatory Toxicology and Pharmacology 69: 496–511.
- Capdevielle M, Van Egmond R, Whelan M, Versteeg D, Hofmann-Kamensky M, Inauen J, Cunningham V, Woltering D (2008): Consideration of Exposure and Species

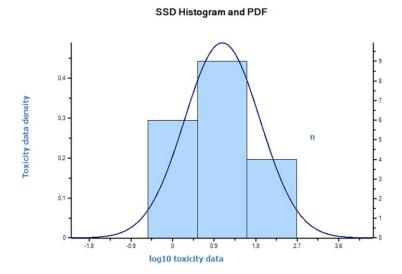
- Sensitivity of Triclosan in the Freshwater Environment. Integrated Environmental Assessemnt and Management 4(1): 15-23.
- Carolina Ecotox Inc. (1997): Effects of triclosan on the growth and reproduction of aquatic plants. Unpublished study report No. 21-02-1, Ciba Specialty Chemicals, NC, USA. As cited on NICNAS 2009. Die Studie lag vor.
- CIBA-Geigy Limited (1990): Report on partition coefficient by OECD TG 107. Unpublished test report: Anal. Test. No. FC-90/1T. Ciba-Geigy Limited, Basel, Switzerland. Zitiert in NICNAS 2009.
- Ciniglia C, Cascone C, Lo Guidice R, Pinto G, Pollio A (2005) Application of methods for assessing the geno- and cytotoxicity of Triclosan to C. ehrenbergii. Journal of Hazardous Materials 122: 227–232
- Cortez FS, Pereira CD, Santos AR, Cesar A, Choueri RB, de Assis Martini G, Bohrer-Morel (2012) Biological effects of environmentally relevant concentrations of the pharmaceutical Triclosan in the marine mussel *Perna perna* (Linnaeus, 1758). Environmental Pollution 168: 145-150
- DeLorenzo M E, Fleming J (2008): Individual and mixture effects of selected pharmaceuticals and personal care products on the marine phytoplankton species *Dunaliella tertiolecta*. Archives of Environmental Contamination and Toxicology 54(2):203-210.
- DeLorenzo M E, Keller J M, Arthur C D, Finnegan M C, Harper H E, Winder V L, Zdankiewicz D L (2008): Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Environmental Toxicology 23(2):224-232.
- Drottar & Krueger (1998). Triclosan. A 96-hour toxicity test with the freshwater alga (Anabaena flos-aquae) Final report. Wildlife International Ltd. Report-No. 473A-101.
- Drottar & Krueger (1999). Report-No. 362A-105.
- Dussault E B, Balakrishnan V K, Sverko E, Solomon K R, Sibley P K (2008): Toxicity of human pharmaceuticals and personal care products to benthic invertebrates. Environmental Toxicology and Chemistry 27(2):425-432.
- EC (2011) European Commission (EC), Technical Guidance For Deriving Environmental Quality Standards. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance Document No. 27.
- ECHA (2015): Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products. Evaluation of active substances. Assessment report. Triclosan product-type 1 (human hygiene). June 2015 Denmark.

- European Chemicals Bureau (2004): Environmental aspects of triclosan. ECBI/18/02 Add. 22. Accessed at http://ecb.jrc.it/classlab/1802a22_IND_triclosan.pdf in April 2006. Zitiert in NICNAS 2009.
- Farré M, Asperger D, Kantiani L, Gonzales S, Petrovic M, Barcelo (2008): Assessment of the acute toxicity of triclosan and methyl triclosan in wastewater based on the bioluminescence inhibition of *Vibrio fischeri*. Anal Bioanal Chem 390: 1999–2007
- Ferrari B, Paxeus N, Pollio A, Andreozzi R, Marotta R, Vogna D, Lyberatos G, J G (2002): Fate and effect of triclosan in the aquatic ecosystems: data for a risk assessment [poster]. Society of Environmental Toxicology and Chemistry Annual Meeting in Europe; 2002 May 12 16; Vienna, Austria. Brussels (BE): SETAC Europe. Poster 73-04. Zitiert in NICNAS 2009.
- Fiss E M, Rule K L, Vikesland P J (2008): Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing products (Environmental Science and Technology (2007) 41, (2387-2394)). Environmental Science and Technology 42(3):976.
- Fritsch EB, Connon RE, Werner I, Davies RE, Beggel S, Feng W, Pessah IN (2013)
 Triclosan Impairs Swimming Behavior and Alters Expression of ExcitationContraction Coupling Proteins in Fathead Minnow (*Pimephales promelas*). Environ.
 Sci. Technol. 47: 2008–2017
- Flaherty C M, Dodson S I (2005): Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61(2):200-207.
- Foran C M, Bennett E R, Benson W H (2000): Developmental evaluation of a potential nonsteroidal estrogen: Triclosan. Marine Environmental Research 50(1-5):153-156.
- Fort D J, Rogers R L, Gorsuch J W, Navarro LT, Robert P, Plautz J R (2010): Triclosan does not affect thyroid-mediated metamorphosis in Xenopus laevis. Toxicological Sciences 113(2):392-400.
- Fort D J, Mathis M B, Hanson, W, Fort C W, Navarro L T, Peter R, Büche C, Unger S, Pawlowski S, Plautz J R (2011): Triclosan and Thyroid-Mediated Metamorphosis in Anurans: Differentiating Growth Effects from Thyroid-Driven Metamorphosis in *Xenopus laevis*. Toxicological Sciences 121(2): 292–302
- Franz S, Altenburger R, Heilmeier H, Schmitt-Jansen M (2008): What contributes to the sensitivity of microalgae to triclosan? Aquatic Toxicology 90(2):102-108.
- Fulton B A, Brain R A, Usenko S, Back J A, King R S, Brooks B W (2009): Influence of nitrogen and phosphorus concentrations and ratios on Lemna gibba growth responses to triclosan in laboratory and stream mesocosm experiments. Environmental Toxicology and Chemistry 28(12):2610-2621.

- Gao L, Yuan T, Cheng P, Bai Q, Zhou C, Ao J, wang W, Zhang H (2015). Effects of triclosan and triclocarban on the growth inhibition, cell viability, genotoxicity and multixenobiotic resistance responses of *Tetrahymena thermophila*. Chemosphere 139: 434–440
- Harada A, Komori K, Nakada N, Kitamura K, Suzuki Y (2008): Biological effects of PPCPs on aquatic lives and evaluation of river waters affected by different wastewater treatment levels. Water Science and Technology: 1541-1546.
- Hwang J, Suh S-S, Chnag M, Park SY, Ryu TK, Lee S, Lee T-K (2014) Effects of triclosan on reproductive prarmeters and embryonic development of sea urchin, *Strongylocentrotus nudus*. Ecotoxicology and Environmental Safety 100: 148–152
- Ishibashi H, Matsumura N, Hirano M, Matsuoka M, Shiratsuchi H, Ishibashi Y, Takao Y, Arizono K (2004): Effects of triclosan on the early life stages and reproduction of medaka *Oryzias latipes* and induction of hepatic vitellogenin. Aquatic Toxicology 67(2):167-179.
- Kim J W, Ishibashi H, Yamauchi R, Ichikawa N, Takao Y, Hirano M, Koga M, Arizono K (2009): Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (*Thamnocephalus platyurus*) and fish (*Oryzias latipes*). Journal of Toxicological Sciences 34(2):227-232.
- Klimisch H J, Andreae M, Tillmann U (1997): A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology 25(1):1-5.
- Kommission der europäischen Gemeinschaften (2001): Richtlinie 2001/59/EG der Kommission vom 6. August 2001 zur 28. Anpassung der Richtlinie 67/548/EWG des Rates zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten für die Einstufung, Verpackung und Kennzeichnung gefährlicher Stoffe an den technischen Fortschritt. Annex 6. Amtsblatt der europäischen Gemeinschaften L225/263.
- Küster A, Pohl K, Altenburger R (2007): A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors. Environmental Science and Pollution Research 14(6):377-383.
- Liang X, Nie X, Ying G, An T, Li K (2013): Assessment of toxic effects of triclosan on the swordtail fish (*Xiphophorus helleri*) by a multi-biomarker approach. Chemosphere 90: 1281–1288
- Levy C W, Roujeinikova A, Sedelnikova S, NBaker P, Stuitje A R, Slabas A R, Rice D W, Rafferty J B (1999): Molecular basis of triclosan activity. Nature 398: 383-384.

- Li YG, Liu BY, Peng Y, Liao W, Wu X, S T, Ou R, Nie X (2013): Toxic effects of triclosan on growth and antioxidase activity of *Selenastrum capricornutum*. Asian Journal of Ecotoxicology 8 (3): 357-365.
- Lores M, Llompart M, Sanchez-Prado L, Garcia-Jares C, Cela R (2005): Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME. Analytical and Bioanalytical Chemistry 381(6):1294-1298.
- Lyndall J, Fuchsman P, Bock M, Barber T, Lauren D, Leigh K, Perruchon E, Capdevielle M (2010): Probabilistic Risk Evaluation for Triclosan in Surface Water, Sediments and Aquatic Biota Tissues. Integrated Environmental Assessment and Management 6(3): 419-440.
- Macedo S, Torres T, Santos MM (2017) Methyl-triclosan and triclosan impact embryonic development of *Danio rerio* and *Paracentrotus lividus*. Ecotoxicology 26:482–489
- Martinez-Gomez DA, Baca S, Walsh EJ (2015) Lethal and sublethal effects of selected PPCPs on the freshwater Rotifer, *Plationus patulus*. Environmental Toxicology and Chemistry 34 (4): 913–922
- Mayer F L J, Ellersieck M R (1986): Manual of acute toxicity: Interpretation and data base for 410 Chemicals and 66 Species of freshwater animal. Resource Publication 160, US Department of Interior, US Fish and Wildlife Service, Washington, DC. Zitiert in NICNAS 2009.
- Memmert U (2006). Triclosan: Effects on the development of sediment-dwelling larvae of *Chironomus riparius* in a water-sediment system with spiked sediment. RCC Ltd., Itingen, Switzerland, Report No. A34896, date: 2006-07-17 zitiert in Brausch and Rand (2011).
- McHenry, M., Suchar, V. and Chigbu, P. (2006): The effects of triclosan on marine algae. Mississippi Academy of Sciences MAS Seventieth Annual Meeting Feb 22-24 2006. Available at: www.msstate.edu/org/MAS/jan06journal/mas06.pdf. Also reported in Performance Report for Co-operative Agreement NA17AE1624 for the period 1 October 2004 to 30 Sept 2005. Florida A @ M University. Environmental Cooperative Science Centre (ECSC). Ecotoxicology studies of triclosan on marine algae. Ms student M. McHenry. Available at: http://www.ecsc.famu.edu/documents/1004to0905performancereportforNA17AE1624.pdf As cited in the UK TAG dossier from 2009 (could not be retrieved though)
- McMurry L M, Oethinger M, Levy S B (1998): Triclosan targets lipid synthesis [4]. Nature 394(6693):531-532.
- Miyoshi N, Kawano T, Tanaka M, Kadono T, Kosaka T, Kunimoto M, Takahashi T, Hosoya H (2003) Use of *Paramecium* species in bioassays for environmental risk management: determination of IC50 values for water pollutants. Journal of Health Science 49(6): 429-435.

- Morin S, Proia L, Ricart M, Bonnineau C, Geiszinger A, Ricciardi F, Guasch H, Romani A M, Sabater S (2010): Effects of a bactericide on the structure and survival of benthic diatom communities. Vie et milieu life and environment 60 (2): 109-116
- Nassef M, Kim S G, Seki M, Kang I J, Hano T, Shimasaki Y, Oshima Y (2010): *In ovo* nanoinjection of triclosan, diclofenac and carbamazepine affects embryonic development of medaka fish (*Oryzias latipes*). Chemosphere 79: 966–973
- NICNAS (2009): Priority Existing Chemical Assessment Report No. 30. Triclosan. http://www.nicnas.gov.au/publications/car/pec/pec30/pec_30_full_report_pdf.pdf. Letzter Zugriff am 04.04.2011.
- Nietch CT, Quinlan EL, Lazorchak JM, Impellitteri CA, Raikow D, Walters D (2013) Effects of a chronic lower range of triclosan exposure on a stream mesocosm community. Environmental Toxicology and Chemistry 32(12): 2874–2887
- Oliveira R, Domingues I, Koppe Grisolia C, Soares A M V M (2009): Effects of triclosan on zebrafish early-life stages and adults. Environ Sci Pollut Res 16: 679–688
- Orvos D R, Versteeg D J, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002): Aquatic toxicity of triclosan. Environmental Toxicology and Chemistry 21(7):1338-1349.
- Palenske N M, Nallani G C, Dzialowski E M (2010): Physiological effects and bioconcentration of triclosan on amphibian larvae. Comparative Biochemistry and Physiology C Toxicology and Pharmacology 152(2):232-240.
- Park H-G, Yeao M-K (2012): The toxicity of triclosan, bisphenol A, bisphenol A diglycidyl ether to the regeneration of cnidarian, *Hydra magnipapillata*. Mol Cell Toxicol 8:209-216
- Peng Y, Luo Y, Nie XP, Liao W, Yang Y, Ying GG (2013) Toxic effects of Triclosan on the detoxification system and breeding of *Daphnia magna*. Ecotoxicology 22:1384–1394
- Perron MM, Ho KT, Cantwell MG, Burgess RM, Pelletier MC (2012). Effects of triclosan on marine benthic and epibenthic organisms. Environmental Toxicology and Chemistry, Vol. 31 (8): 1861–1866
- Schettgen C (2000): Bioakkumulation von Triclosan bei verschiedenen pH-Werten des Wassers und der Pyrethroide Cyfluthrin, Cypermethrin, Deltamethrin und Permethrin. Oldenburg: IBIT Universitätsbibliothek.
- Silva AR, Cardoso DN, Cruz A, Lourenco J, Mendo S, Soares AMVM, Loureiro S (2015) Ecotoxicity and genotoxicity of a binary combination of triclosan and carbendazim to Daphnia magna. Ecotoxicology and Environmental Safety 115: 279–290


- Singer H, Müller S, Tixier C, Pillonel L (2002): Triclosan: Occurrence and fate of a widely used biocide in the aquatic environment: Field measurements in wastewater treatment plants, surface waters, and lake sediments. Environmental Science and Technology 36(23):4998-5004.
- Sparc (2010): Sparc V4.5 online calculator. http://archemcalc.com/sparc/
- Stuerman & Hicks (1997) Acute toxicity of triclosan to *Scenedesmus subspicatus*. ABC Laboratories. GLP Studie. Studie liegt vor.
- Svobodova K, Plackova M, Novotna V, Cajthaml T (2009): Estrogenic and androgenic activity of PCBs, their chlorinated metabolites and other endocrine disruptors estimated with two in vitro yeast assays. Science of the Total Environment 407(22):5921-5925.
- Tamura I, Kagota K-I, Yasuda Y, yoneda S, Morita J, Nakada N, Kameda Y, Kimura K, Tatarazako N, Yamamoto H (2013) Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: triclosan, triclocarban, resorcinol, phenoxyethanol and p-thymol. J. Appl. Toxicol. 33: 1222–1229
- Tatarazako N, Ishibashi H, Teshima K, Kishi K, Arizono K (2004): Effects of triclosan on various aquatic organisms. Environ Sci 11(2):133-140.
- UN (2015): Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 6th revised edition ed. United Nations, New York.
- US EPA (2008): EPI Suite™ Version 4.0. http://www.epa.gov/opptintr/exposure/pubs/episuite.htm.
- Van Vlaardingen P L A, Traas T P, Wintersen A M, Aldenberg T (2005): ETX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity Data.
- Veith G D, Defoe D L, Bergstedt B. V. (1979): Measuring and estimating the bioconcentration factor of chemicals in fish. J Fish Res Board Can 36 1040-1048.
- Veldhoen N, Skirrow R C, Osachoff H, Wigmore H, Clapson D J, Gunderson M P, Van Aggelen G, Helbing C C (2006): The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquatic Toxicology 80(3):217-227.
- von der Ohe, P.C., Schmitt-Jansen, M., Slobodnik, J.,Brack, W. (2011): Triclosan the forgotten priority substance? Environmental Science and Pollution Research. *In press*

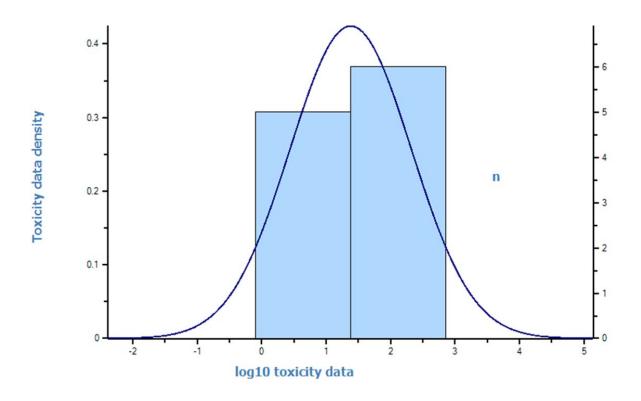
- Wang X-N, Liu Z-T, Yan Z-G, Zhang C, Wang W-L, Zhou J-L, Pei S-W (2013) Development of aquatic life criteria for triclosan and comparison of the sensitivity between native and non-native species. Journal of Hazardous Materials 260: 1017–1022
- Wüthrich V (1990) Toxicitx of FAT 80'023/Q to *Scenedesmus subspicatus* (OECD Algae Growth Inhibition Test). RCC study project number 262945.
- Wüthrich V (1995) Toxicitx of 14C-FAT 80'023/R to *Scenedesmus subspicatus* (OECD Algae Growth Inhibition Test). RCC study project number 385637.
- Xu X, Lu Y, Zhang D, Wang Y, Zhou X, Xu H, Mei Y (2015). Toxic Assessment of Triclosan and Triclocarban on *Artemia salina*. Bull Environ Contam Toxicol 95:728–733
- Yang L H, Ying G G, Su H C, Stauber J L, Adams M S, Binet M T (2008): Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga *Pseudokirchneriella subcapitata*. Environmental Toxicology and Chemistry 27(5):1201-1208.

Anhang

Tab. A1: "Goodness of fit" für die SSD der chronischen NOEC und EC10 Werte - berechnet mit dem Programm ETX 2.0 (van Vlaardingen *et al.* 2004).

Anderson-Darl	ing test for no	ormality				
Sign. level	Critical	Normal?				
0.1	0.631	Accepted				
0.05	0.752	Accepted		AD	Statist ic:	0.370912
0.025	0.873	Accepted		n:		19
0.01	1.035	Accepted				
Kolmogorov-Smirnov test for normality						
Sign. level	Critical	Normal?				
0.1	0.819	Accepted				
0.05	0.895	Accepted		KS	Statist ic:	0.547949
0.025	0.995	Accepted		n:		19
0.01	1.035	Accepted				
Cramer von M	ises test for n	ormality				
Sign. level	Critical	Normal?	\top			
0.1	0.104	Accepted	+			
0.05	0.126	Accepted		CM	Statist ic:	0.041331
0.025	0.148	Accepted		n:		19
0.01	0.179	Accepted				

Abb. A1: Histogramm für die SSD der chronischen NOEC und EC10 Werte - berechnet mit dem Programm ETX 2.0 (van Vlaardingen *et al.* 2004).


Tab. A2: HC5 der SSD der chronischen NOEC und EC10 Werte - berechnet mit dem Programm ETX 2.0 (van Vlaardingen *et al.* 2004).

Parameters	s of the normal	distribution			
Name	Value	Description			
mean	1.076827	mean of the log toxicity values			
s.d.	0.816489	sample standard deviation			
n	19	sample size			
HC5 result	S				
Name	Value (μg/L)	log10(Value)	Description		
LL HC5	0.125443	-0.90156	lower estimate of the HC5		
HC5	0.514187	-0.28888	median estimate of the HC5		
UL HC5	1.337343	0.126243	upper estimate of the HC5		
sprHC5	10.661	1.027798	spread of the HC5 estimate		
FA At HC5	results				
Name	Value	Description			
FA lower	1.221	5% confidence limit of the FA at standardised median logHC5			
FA me dia n	5	50% confidence limit of the FA at standardised median logHC5			
FA upper	14.393	95% confidence limit of the FA at standardised median logHC5			
HC50 resu	lts				
Name	Value (μg/L)	log10(Value)	Description		
LL HC50	5.649499	0.75201	lower estimate of the HC50		
HC50	11.93512	1.076827	median estimate of the HC50		
UL HC50	25.2141	1.401643	upper estimate of the HC50		
sprHC50	4.463068	0.649634	spread of the HC50 estimate		
EA ALLICE	0				
FA At HC5					
Name	Value	Description			
FA lower	35.29548	5% confidence limit of the FA at standardised median logHC50			
FA	50	50% confidence limit of the FA at standardised median logHC50			
me dia n					
dia	64.70452	95% confidence	limit of the FA at standardised median logHC50		

Tab. A3: "Goodness of fit" für die SSD der akuten EC50 Werte für Pflanzen und Bakterien - berechnet mit dem Programm ETX 2.0 (van Vlaardingen *et al.* 2004).

Anderson-Da	arling test			
Sign. level	Critical	Normal?		
0.1	0.631	Accepted		
0.05	0.752	Accepted	AD Statistic:	0.411154
0.025	0.873	Accepted	n:	11
0.01	1.035	Accepted		
Kolmogorov- normality	-Smirnov			
Sign. level	Critical	Normal?		
0.1	0.819	Accepted		
0.05	0.895	Accepted	KS	0.623504
			Statistic:	
0.025	0.995	Accepted	n:	11
0.01	1.035	Accepted		
Cramer von	Mises tes			
Sign. level	Critical	Normal?		
0.1	0.104	Accepted		
0.05	0.126	Accepted	CM Statistic:	0.049828
0.025	0.148	Accepted	n:	11
0.01	0.179	Accepted		

SSD Histogram and PDF

Abb. A2: Histogramm für die SSD der akuten EC50 Werte für Pflanzen und Bakterien - berechnet mit dem Programm ETX 2.0 (van Vlaardingen *et al.* 2004).

Tab. A4: HC5 der SSD der akuten EC50 Werte für Pflanzen und Bakterien- berechnet mit dem Programm ETX 2.0 (van Vlaardingen *et al.* 2004).

Paramete	rs of the no	rmal distribution		
Name	Value	Description		
mean	1.380312	mean of the log toxicity values		
s.d.	0.940149	sample standard deviation		
n	11	sample size		
HC5 resul	ts			
Name	Value	log10(Value)	Description	
LL HC5	0.054175	-1.2662	lower estimate of the HC5	
HC5	0.611028	-0.21394	median estimate of the HC5	
UL HC5	2.519797	0.401366	upper estimate of the HC5	
sprHC5	46.51227	1.667568	spread of the HC5 estimate	
FA At HC5 results				
Name	Value	Description		
FA lower	0.695	5% confidence limit of the FA at standardised		
		median logHC5		
FA	5	50% confidence limit of the FA at standardised		
median		median logHC5		
FA	18.964	95% confidence limit of the FA at standardised		
upper		median logHC5		
HCEO roos	ulto			
HC50 res	1	log10(\/alua)	Description	
Name	Value	log10(Value) 0.866541	Description	
LL HC50	7.354299	0.800541	lower estimate of the HC50	
HC50	24.00555	1.380312	median estimate of the HC50	
UL HC50	78.35776	1.894082	upper estimate of the HC50	
sprHC50	10.65469	1.027541	spread of the HC50 estimate	
FA At HC50 results				
Name	Value	Description		
FA lower	30.99677	5% confidence limit of the FA at standardised median logHC50		
FA	50	50% confidence limit of the FA at standardised		
median	-	median logHC50		
FA	69.00323	95% confidence limit of the FA at standardised		
upper		median logHC50		