

Schweizerisches Zentrum für angewandte Ökotoxikologie Centre Suisse d'écotoxicologie appliquée Eawag-EPFL

EQS - Vorschlag des Oekotoxzentrums für: Bentazon

Ersterstellung: 19.07.2013

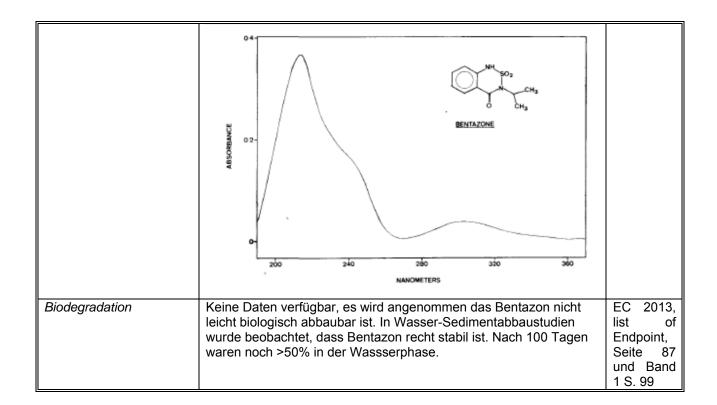
Aktualisierung: 11.02.2015 (Stand der Datensuche)

1 EQS-Vorschläge

CQK (AA-EQS): 270 μg/L (vorher 28 μg/L)

AQK (MAC-EQS): $470 \mu g/L$ (vorher 260 $\mu g/L$)

Das chronische Qualitätskriterium (CQK) und das akute Qualitätskriterium (AQK) wurden nach dem TGD for EQS der Europäischen Kommission (EC 2011) hergeleitet. Damit die Dossiers international vergleichbar sind, wird im Weiteren die Terminologie des TGD verwendet.


2 Physikochemische Parameter

In Tabelle 1 werden Identität, chemische und physikalische Parameter für Bentazon angegeben. Wo bekannt, wird mit (exp) spezifiziert, dass es sich um experimentell erhobene Daten handelt, während es sich bei mit (est) gekennzeichneten Daten um abgeschätzte Werte handelt. Wenn keine dieser beiden Angaben hinter den Werten steht, fand sich in der zitierten Literatur keine Angabe.

Tabelle 1: Geforderte Angaben zu Bentazon (freie Säure) nach dem TGD for EQS (EC, 2011) zusätzliche Angaben in kursiv.

Eigenschaften	Name/Wert	Referenz
IUPAC Name	3-isopropyl-(1H)-2,1,3-benzothiadiazin-4-(3H)-one-2,2-dioxide	EC, 2000
Strukturformel	O CH ₃ N CH ₃ S=O N O	Sigma- Aldrich, 2013
Summenformel	C ₁₀ H ₁₂ N ₂ O ₃ S	EC, 2000
CAS-Nummer	25057-89-0	EC, 2000
EINECS-Nummer	246-585-8	EC, 2000
SMILES-code	O=C(N(S(=O)(=O)Nc1cccc2)C(C)C)c12	EPI, 2011
Molekulargewicht (g·mol ⁻¹)	240.3	EC, 2000
Schmelzpunkt (°C)	139 - 141 (99.8% Reinheit)	EC, 2000
	173.04 (est)	EPI, 2011
	138 (exp)	
Siedepunkt (°C)	Kein Sieden oder Sublimieren bis zur Dekomposition (Gas Freisetzung) bei 210°C	EC, 2000
Dampfdruck (Pa)	1.7 * 10 ⁻⁴ bei 20 °C (100% Reinheit)	EC, 2000
. , ,	3.4 * 10 ⁻⁵ (Modifizierte Grain Methode)	EPÍ, 2011
	4.6 * 10 ⁻⁴ (exp) (20°C)	
Henry-Konstante	$7.2 * 10^{-5}$	EC, 2000

(Pa·m³·mol⁻¹)	2.0 * 10 ⁻⁵ (est) (Bond Methode) 2.2 * 10 ⁻⁴ (exp)	EPI, 2011
	3.05 * 10 ⁻⁵ (est)	
Wasserlöslichkeit (g·L ⁻¹)	pH 3: 0.49 (20 °C)	EC, 2000
(0 /	pH 7 : 0.57 (20 °C)	,
	0.5 (exp)	EPI, 2011
Dissoziationskonstante (pK _a)	3.28 (24 °C), bei neutralem pH dissoziiert als Anion	EC, 2000
<i>n</i> -Octanol/Wasser	Bei 22°C:	EC, 2000
Verteilungskoeffizient	pH 5: 0.77	
(log K _{ow})	pH 7: - 0.46	
	pH 9: - 0.55	
	2.34 (exp database)	EPI, 2011
Sediment/Wasser	log K _{oc} 1.0 (est) (MCl Methode)	EPI, 2011
Verteilungskoeffizient		, -
(log K_{oc} oder log K_p)	log K _{oc} 2.1 (est) (Kow Methode)	
	1 (/ 4.50 /)	
	$\log K_{\rm oc} 1.52 ({\rm exp})$	
	alla Marta fiin dan Kananartina art Dadam kastinarat	
	alle Werte für das Kompartiment Boden bestimmt	
	averagina antalla Manta fün Därdan.	EC, 2000
	experimentelle Werte für Böden:	LO, 2000
	Boden pH org.C log Koc	
	Lehm 7.3 0.6 1.57	
	lehmiger Sand 6.1 2.7 1.11	
	Sand 6.8 0.5 1.67	
	Ton 5.4 1.8 1.36	
	Ton 7.7 2.9 1.11	
	Ton 4.3 1.7 2.25	
	lehmiger San 5.0 0.6 1.89	
	toniges Sediment	
	(Reis Boden) 6.6 0.7 1.40	
Hydrolysestabilität	Zwischen pH 5 und 9 (25 °C) ist Bentazon stabil	EC, 2000
(Halbwertszeit)		
Photostabilität	pH 5: 122 h (25 °C)	EC, 2000
(Halbwertszeit)		
	pH 7: 93 / 63 h (25 °C)	
	pH 9: 14 h (25 °C)	
	für den 50. Breitengrad (Deutschland) wurde für die Wasserschicht	
	von 0-1 cm in stehenden Gewässern ein DT50 von 3.6 Tagen	
	(März) und 1.6 Tagen (Mai) vorhergesagt.	
	(man_r) and no ragen (man, remeigeough	
	Es wurde folgendes Absorbtionsspektrum bestimmt:	Chiron et
		al., 1995
		3, 1000

3 Allgemeines

Anwendung:

Bentazon ist ein Kontaktherbizid zur Bekämpfung von *Anthemis* (Hundskamillen), *Chamomilla* (Echte Kamille) und *Matricaria spp* (Kamille), *Chrysanthemum segetum* (Saat-Wucherblume), *Galium aparine* (Kletten-Labkraut), *Lapsana communis* (Gemeiner Rainkohl) und *Stellaria media* (Gewöhnliche Vogelmiere) in Winter- und Frühlingsgetreide. Wird auch in anderen Kulturpflanzen verwendet wie Erdnussbäumen, Mais, Erbsen, Bohnen, Reis und Sojabohnen. Bentazon findet sich als Natrium Salz in den Formulierungen (US EPA 1995). Die Zulassung (EC, 2013) ist jedoch für die freie Säure.

Wirkungsweise:

Inhibiert den Elektronentransport der Photosynthese an der Photosystem-II-Bindungsstelle. Bentazon hemmt zusätzlich weitere physiologische Prozesse in Pflanzen, z.B. die RNA-Synthese oder die Lipid- und Protein-Synthese (Al-Mendoufi und Ashton 1984). Es wird hauptsächlich über die Blätter absorbiert und verbleibt dort. Wenn es jedoch über die Wurzel aufgenommen wird, wird es über das Xylem zu den Blättern transloziert.

Die bevorzugte Anwendung erfolgt im Nachauflauf gegen zweikeimblättrige Unkräuter (Kussatz et al., 1999).

Analytik:

Kampioti und Mitarbeiter (2005) erreichten mittels SPE-LC-MS-MS^a in Wasser eine Detektionsgrenze (LOD: Limit Of Detection) von 0.14 ng/L und eine Bestimmungsgrenze (LOQ: Limit Of Quantification) von 0.36 ng/L.

Stabilität und Metaboliten:

In Wasser im Bereich von pH 5, 7 und 9 findet keine Hydrolyse des Herbizids Bentazon statt. Unter Lichteinstrahlung wird jedoch die Hälfte der Ursprungsmenge innerhalb von 14 (pH 9) - 122 (pH 5) Stunden abgebaut (Eswein und Panek 1986 zitiert auf Seite 12-13 im Annex B von EC 2013). Im Draft Assessment Report wurde jedoch unter den Lichtbedingungen (60-120 μΕ/(m²s)) eines 72 h Algentest kein Abbau beobachtet (Jatzek 2003b zitiert auf Seite 15 im Band B9 von EC 2013). Es scheint erst bei längerer Testdauer zu einer signifikanten Photolyse zu kommen. So wurden in einem 7-tägigen, statischen Test, bei 8300 lux mit der Wasserlinse *Lemna gibba* (Hoffmann F. 2011 zitiert auf Seite 16 im Band B9 von EC 2013) am Testende eine Wiederfindung von 78.4-104.8 % beobachtet. Das liegt nur sehr knapp unterhalb des Bereichs, innerhalb dessen man die Testergebnisse auch auf die nominalen Konzentrationen hätte beziehen können (80% bis 120% Wiederfindung).

Die analytische Validierung der Testkonzentrationen ist somit nicht als zwingendes Kriterium für die Validität einer akuten Studie (bis 7 Tage in statischen Systemen) anzusehen.

Als ein wichtiges Transformationsprodukt wurde Bentazon-N-Methyl (Bentazon-N-Me) im Rahmen der Zulassung identifiziert (EC 2013). Es liegen genügend Daten zur EQS Herleitung vor, daher wurden im ursprünglichen EQS Dossier auch für Bentazon-N-Me EQS hergeleitet (AA-EQS (AA-EQS = 23 μ g/L; MAC-EQS = 860 μ g/L). Diese EQS wurden nicht aktualisiert.

<u>Existierende EQS:</u> Es wurden folgende effektbasierten Qualitätskriterien gefunden:

^a Festphasenextraktion (SPE), Liquidchromatographie (LC), Massenspektrometrie (MS)

Land	AA-EQS [μg/L]	MAC-EQS [µg/L]	Referenz
IKSR	73	450	IKSR, 2009
Frankreich	70	450	INERIS 2009
Keml (SE)	30		Zitiert in Andersson und Kreuger 2011
Umweltbundesamt (D)	70	-	Kussatz et al. 1999
Deutschland	0.1		OGewV 2016

Für Bentazon-N-Me wurden keine Qualitätskriterien gefunden.

Formulierungen:

Es wurden auch Effektdaten zu Formulierungen gesammelt. Da diese jedoch zum Teil eine unterschiedliche Toxizität im Vergleich zum reinen Stoff aufweisen wurden sie nicht zur Ableitung des EQS verwendet.

4 Effektdatensammlung

Alle gefundenen Effektdaten für Bentazon werden in Tabelle 2 zusammengefasst. In Tabelle 3 finden sich Effektdaten zu Bentazon Formulierungen, die jedoch nicht für die EQS Herleitung berücksichtigt wurden (siehe dazu auch Kapitel 3). Der Effektwert bezieht sich wo bekannt, immer auf den aktiven Stoff und ist in mg/L angegeben. Eine Bewertung der Validität wurde nach den Klimisch-Kriterien (Klimisch et al. 1997) durchgeführt. Literaturdaten, die in grau dargestellt wurden, erfüllen nicht die Datenanforderungen nach dem TGD for EQS, sollen aber als zusätzliche Information genannt werden. Ebenfalls in grau dargestellt wurden valide Literaturdaten, die aufgrund eines < oder > Operators, der Testdauer, des Endpunktes oder weiterer Gründen (siehe Klimisch et al., 1997) nicht direkt für die EQS Herleitung geeignet sind. Gemäss TGD for EQS (EC 2011) wurden für Cyanobakterien, Algen und Wasserpflanzen der Endpunkt Wachstumsrate gegenüber Biomasse bevorzugt, wenn aus einer Studie beide Endpunkte vorlagen. Werte aus dem Draft Assessment Report (EC, 2013) wurde gemäss TGD for EQS als "face value" übernommen und mit Klimisch 1 bewertet. Wegen fehlender Angaben in US EPA (1995), EC (2000) und Office of Pesticides Programs (2000) kann nicht ausgeschlossen werden, dass einige Studien mehrfach aufgeführt sind. Es wurde aber, wenn möglich, anhand der angegebenen Reinheit überprüft, ob es sich um identische Studien handelte.

Tabelle 2: Effektdatensammlung für Bentazon.

			E	FFEI	KTDAT	ENS	AMMLUN	IG Benta	azon		
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert in mg/L	Notiz	Expositionsre gime Reinheit (%) Salinität (‰)	Validität	Referenz
					ak	ute D	aten limnis	ch			
Protozoa	Spirostomum ambiguum	Mortalität	24	h	LC50	=	42.3	C, E	Statisch, k.A.	2	Nalecz-Jawecki et al., 2002
Protozoa	Spirostomum ambiguum	Wachstumsrate	24	h	EC50	=	42.3	C, E	Statisch, k.A.	2	Nalecz-Jawecki et al., 2002
Bakterien	Photobacterium phosphoreum	Reduktion der Biolumineszenz	5	min	EC50	=	28.92	С	Statisch, >97	2	Ruiz et al., 1997
Bakterien	Photobacterium phosphoreum	Reduktion der Biolumineszenz	15	min	EC50	=	28.58	D	Statisch, >97	2	Ruiz et al., 1997
Cyano- bakterien	Anabaena flos- aquae	Biomasse (Zellzahl) für "BAS 351 H (Bentazon)- tech. 53% active	120	h	EC50	Ш	10.1	B, K	53	3	Hughes und Alexander, 1991a

	EFFEKTDATENSAMMLUNG Bentazon													
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert in mg/L	Notiz	Expositionsre gime Reinheit (%) Salinität (‰)	Validität	Referenz			
		ingredient"												
Cyano- bakterien	Anabaena flos- aquae	k.A.	120	h	EC50	=	10.1	D, K	k.A.	3	EC, 2000, Office of Pesticides Programs, 2000			
Cyano- bakterien	Oscillatoria laete- virens	Photosynthe- tische Hill Aktivität (kurze Exposition nach Dunkeadaption)	120	h	IC50	=	0.00154	D, F, J	k.A.	3	Shrivastava, 2005			
Cyano- bakterien	Oscillatoria laete- virens	Photosynthe- tische Hill Aktivität (lange Exposition über eine ganzen Zellzyklus)	k.A.		IC50	II	4.6	D, F, J	k.A.	3	Shrivastava, 2005			
Cyano- bakterien	Oscillatoria laete- virens	Wachstum (Chlorophyll- gehalt)	120	h	EC50	=	4.6	D, F, J	k.A.	3	Shrivastava, 2005			
Algen	Ankistrodesmus bibraianus	k.A.	96	h	EC50	=	47.3	D	k.A.	4	BBA, 1993, zitiert in IKSR, 2009			
Algen	Ankistrodesmus bibraianus	k.A.	96	h	EC50	=	47.3	D	k.A.	4	ICS, 2006, zitiert in IKSR, 2009			
Algen	Ankistrodesmus bibraianus	Biomasse	72	h	EC50	=	62	D	k.A.	4	Dohmen 1990 zitiert in der Datenzusammenstellung von BASF 2014			
Algen	Scenedesmus vacuolatus	Reproduktion	24	h	EC50	=	<u>42.5</u>	D	>98%	2	Faust et al., 1993			
Algen	Raphidocelis subcapitata (Pseudokirchneri ella subcapitata)	Wachstum (Biomasse)	72	h	EC50	=	16.8	В	Statisch, 98.4	1	Jatzek, 2003 zitiert auf Seite 16 Band 9 von EC 2013			
Algen	Raphidocelis subcapitata (Pseudokirchneri ella subcapitata)	k.A.,	k.A.	k.A.	EC50	=	4.5	D	98	4	US EPA, 1995			
Algen	Raphidocelis subcapitata	Wachstumsrate	72	h	EC50	=	<u>33.3</u>	В	Statisch, 98.4	1	Jatzek 2003 zitiert auf Seite 16 Band 9 von EC 2013			

	EFFEKTDATENSAMMLUNG Bentazon													
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert in mg/L	Notiz	Expositionsre gime Reinheit (%) Salinität (‰)	Validität	Referenz			
	(Pseudokirchneri ella subcapitata)													
Algen	Raphidocelis subcapitata (Pseudokirchneri ella subcapitata)	Wachstumsrate (Fluoreszenz)	48	h	EC50	II	13.6	С	Statisch, >90	2	Cedergreen & Streibig, 2005			
	Raphido¬celis subcapitata (Pseudokirchneri ella subcapitata)	Geometrischer Mittelwert aus					21.3							
Algen	Raphido¬celis subcapitata (Pseudokirchneri ella subcapitata)	Wachstum	72	h	EC50	=	34.4	D	k.A.	3	ICS, 2006, zitiert in IKSR, 2009			
Algen	Raphido¬celis subcapitata (Pseudokirchneri ella subcapitata)	Wachstumsrate (basierend auf Chlorophyll Messungen)	48	h	EC50	Ш	0.051	C, G	>90	3	Munkegaard et al., 2008			
Algen	Raphido¬celis subcapitata (Pseudokirchneri ella subcapitata)	k.A	120	h	EC50	=	4.5	D	53	4	Office of Pesticides Programs, 2000			
Algen	Scenedesmus acutus	Wachstumsrate (Zellzahlt)	24	h	EC50	=	7.7	D, F	k.A.	3	Grossmann et al., 1992			
Algen	Navicula pelliculosa	Biomasse	120	h	EC50	>	14.73	D	k.A.	4	Hughes & Alexanber 1991 zitiert in der Datenzusammenstellung von BASF 2014			
Wasser- pflanzen	Lemna aequinoctialis	Wachstum (Frondfläche)	8	d	EC50	=	1.0	D, F	k.A.	3	Grossmann et al., 1992			
Wasser- pflanzen	Lemna paucicostata	Wachstumsrate (Frondfläche)	7	d	EC50	=	3.88	C, F	"Analyt. Grade"	3	Michel et al., 2004			
Wasser- pflanzen	Lemna gibba	k.A.	14	d	EC50	=	5.4	D, K	k.A.	3	EC, 2000			
Wasser- pflanzen	Lemna gibba	Wachstum (Frondzahl) für "BAS 351 H (Bentazon)- tech.	14	d	EC50	=	5.4	D, K	53	3	Hughes & Alexander, 1991b			

	EFFEKTDATENSAMMLUNG Bentazon													
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert in mg/L	Notiz	Expositionsre gime Reinheit (%) Salinität (‰)	Validität	Referenz			
		53% active ingredient												
Wasser- pflanzen	Lemna gibba	k.A.	14	d	EC50	Ш	5.35	D	53	4	Office of Pesticides Programs, 2000			
Wasser- pflanzen	Lemna gibba	Wachstumsrate (Anzahl Fronds)	7	d	EC50	=	25.3	Α	Statisch, 100	1	Hoffmann 2011b zitiert auf Seite 18 in Band 9 von EC 2013			
Wasser- pflanzen	Lemna gibba	Biomasse (Anzahl Fronds) (Yield)	7	d	EC50	Ш	9.1	А	Statisch, 100	1	Hoffmann 2011b zitiert auf Seite 18 in Band 9 von EC 2013			
Wasser- pflanzen	Lemna gibba	Biomasse (Trockengewicht) (Yield)	7	d	EC50	Ш	7.1	Α	Statisch, 100	1	Hoffmann 2011b zitiert auf Seite 18 in Band 9 von EC 2013			
Wasser- pflanzen	Lemna gibba	Wachstumsrate (Anzahl Fronds) für das Bentazon Natrium Salz	7	d	EC50	=	23	A, N	Statisch, 91.9	1	Hoffmann 2011a zitiert auf Seite 19 in Band 9 von EC 2013			
Wasser- pflanzen	Lemna gibba	Biomasse (Anzahl Fronds (Yield) für das Bentazon Natrium Salz	7	d	EC50	=	9.8	A, N	Statisch, 91.9	1	Hoffmann 2011a zitiert auf Seite 19 in Band 9 von EC 2013			
Wasser- pflanzen	Lemna gibba	Biomasse (Trpckengewicht) (Yield) für das Bentazon Natrium Salz	7	d	EC50	=	8.6	A, N	Statisch, 91.9	1	Hoffmann 2011a zitiert auf Seite 18 in Band 9 von EC 2013			
Wasser- pflanzen	Lemna gibba	Wachstumsrate (Trockengewicht) für das Bentazon Natrium Salz	7	d	EC50	=	18.6	A, N	Statisch, 91.9	1	Hoffmann 2011a zitiert auf Seite 18 in Band 9 von EC 2013			
Wasser- pflanzen	Lemna gibba	Wachstumsrate (Trockengewicht)	7	d	EC50	Ш	12.0	А	Statisch, 100	1	Hoffmann 2011b zitiert auf Seite 18 in Band 9 von EC 2013			
	Lemna gibba	Geometrischer Mittelwert			EC50	Ш	14.9							
Wasser- pflanzen	Lemna minor	Wachstumsrate	7	d	EC50	II	2.94	C, G	>90	3	Munkegaard et al., 2008			

	EFFEKTDATENSAMMLUNG Bentazon													
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert in mg/L	Notiz	Expositionsre gime Reinheit (%) Salinität (%)	Validität	Referenz			
Wasser- pflanzen	Lemna minor	Wachstumsrate (Frondfläche)	7	d	EC50	=	2.56	С	Statisch, >90	3	Cedergreen & Streibig, 2005			
Wasser- pflanzen	Lemna minor	Wachstumsrate (Frondfläche) – neu ausgewertet nach OECD 221	7	d	EC50	=	4.68	С	Statisch,	2	Cedergreen & Streibig, 2005			
Ringelwürmer	Lumbriculus variegatus	Mortalität	48	h	LC10	=	63.2	D	Statisch, >95	2	Mäenpää et al., 2003			
Ringelwürmer	Lumbriculus variegatus	Mortalität	48	h	LC50	=	79.1	D	Statisch, >95	2	Mäenpää et al., 2003			
Krebstiere	Daphnia magna	k.A.	48	h	EC50	=	125	D	k.A.	4	BBA, 1993, zitiert in IKSR, 2009			
Krebstiere	Daphnia magna	Immobilisierung für das Natrium Salz	48	h	EC50	II	125	D, N	94	4	Office of Pesticides Programs, 2000			
Krebstiere	Daphnia magna	Immobilisierung für das Natrium Salz	48	h	EC50	>	500	D, N	48.9	4	Office of Pesticides Programs, 2000			
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	=	64	D	44.3	4	Office of Pesticides Programs, 2000			
Krebstiere	Daphnia magna	k.A.	96	h	EC50	=	64	D, K	k.A.	3	EC, 2000			
Krebstiere	Daphnia magna	k.A.	k.A.		EC50	>	100	D	94	4	US EPA, 1995			
Krebstiere	Daphnia magna	Mortalität	48	h	EC50	>	100	В	98.4	1	Jatzek 2003b zitiert auf Seite 12 in Band 9 von EC 2013			
Insekten	Chironomus riparius	Mortalität	48	h	LC10	=	34.4	D	Statisch, >95	2	Mäenpää et al., 2003			
Insekten	Chironomus riparius	Mortalität	48	h	LC50	=	62.3	D	Statisch, >95	2	Mäenpää et al., 2003			
Fische	Cyprinus carpio	Mortalität (für das Bentazon Natrium Salz)	96	h	k.A.	>	1000	D, N	k.A.	4	Anonymus in EC 2013			
Fische	Lepomis macrochirus	Mortalität (für das Bentazon Natrium Salz)	96	h	LC50	=	610	D, N	"Tech"	4	Office of Pesticides Programs, 2000			

	EFFEKTDATENSAMMLUNG Bentazon													
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert in mg/L	Notiz	Expositionsre gime Reinheit (%) Salinität (%)	Validität	Referenz			
Fische	Lepomis macrochirus	Mortalität (für das Bentazon Natrium Salz)	96	h	LC50	>	1000	D, N	48.9	4	Office of Pesticides Programs, 2000			
Fische	Lepomis macrochirus	Mortalität (für das Bentazon Natrium Salz)	96	h	LC50	>	100	D, N	94	4	Office of Pesticides Programs, 2000, US EPA, 1995			
Fische	Lepomis macrochirus	Mortalität	96	h	LC50	>	100	D	k.A.	1	Anonymus in EC 2013, US EPA, 1995			
Fische	Oncorhynchus mykiss	Mortalität (für das Bentazon Natrium Salz)	96	h	LC50	=	190	D, N	"Tech"	4	Office of Pesticides Programs, 2000			
Fische	Oncorhynchus mykiss	Mortalität (für das Bentazon Natrium Salz)	96	h	LC50	^	100	D, N	48.9	4	Office of Pesticides Programs, 2000			
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	>	100	D	97.8	4	Office of Pesticides Programs, 2000			
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	>	100	D	97	4	Office of Pesticides Programs, 2000			
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	>	100	D	k.A.	1	Anonymus in EC 2013			
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	>	100	D	97	4	US EPA, 1995			
Fische	Pimephales promelas	Mortalität (für das Bentazon Natrium Salz)	96	h	LC50	>	113.5	A, N	91.9	1	Anonymus 2011a Anonymus in EC 2013			
Fische	Perca flavescens	k.A.	96	h	LC50	=	100	D	k.A.	4	ICS, 2006, zitiert in IKSR, 2009			
			ı		а	kute	Daten mari	n						
Algen	Chaetoceros gracilis	Wachstumsrate (Zellzahl)	72	h	EC50	II	<u>150</u>	С	Statisch, k.A.	2	Hourmant et al., 2009			
Algen	Skeletonema costatum	k.A.	120	h	EC50	Ш	10.1	D	53	4	Office of Pesticides Programs, 2000			
Krebstiere	Americamysis bahia	Mortalität	96	h	LC50	>	132.5	D	53	4	Office of Pesticides Programs, 2000			

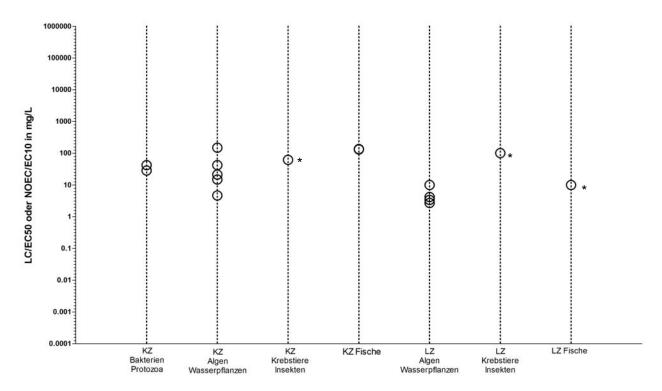
	EFFEKTDATENSAMMLUNG Bentazon												
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert in mg/L	Notiz	Expositionsre gime Reinheit (%) Salinität (%)	Validität	Referenz		
Krebstiere	Mysidopsis bahia	Mortalität (Salinität 25 ‰)	96	h	EC50	>	132.5	А	53.0	1	Graves and Smith 1991a zitiert in EC 2013		
Krebstiere	Pandalus borealis	Mortalität	48	h	LC50	^	132.5	D	53	4	US EPA, 1995		
Mollusken	Mercenaria mercenaria	Mortalität	48	h	LC50	=	20	D	94	4	Office of Pesticides Programs, 2000		
Mollusken	Mercenaria mercenaria (Embryo)	Mortalität	k.A.		NOEC	=	20	D	94	4	US EPA, 1995		
Mollusken	Crassostrea virginica (Embryo)	Mortalität (Salinität 25 ‰)	96	h	LC50	^	109	А	53	3	Graves and Smith 1992a zitiert in EC 2013, US EPA, 1995, Office of Pesticides Programs, 2000		
Fische	Cyprinodon variegatus	Mortalität	96	h	LC50	Ш	136	D	94	4	US EPA, 1995		
Fische	Cyprinodon variegatus	Mortalität (Salinität 25 ‰)	96	h	LC50	^	136	А	53.0	3	Anonymus 1991a zitiert in EC 2013, Office of Pesticides Programs, 2000		
			С	hronis	che und	sub	chronische	Daten lim	nisch				
Cyanobakterie n	Anabaena flos- aquae	Biomasse (Zellzahl) für "BAS 351 H (Bentazon)- tech. 53% active ingredient"	120	h	NOEC	=	6.3	В, К	53	3	Hughes und Alexander, 1991a		
Algen	Ankistrodesmus bibraianus	k.A.	120	h	NOEC	>	1.0	D	k.A.	4	BBA, 1993, zitiert in IKSR, 2009		
Algen	Ankistrodesmus bibraianus	k.A.	120	h	NOEC	=	2.0	D	k.A.	4	ICS, 2006, zitiert in IKSR, 2009		
Algen	Raphido¬celis subcapitata (Pseudokirchneri ella subcapitata)	Wachstum (Biomasse)	72	h	EC10	=	7.9	В	Statisch, 98.4	1	Jatzek, 2003b zitiert auf Seite 16 in Band 9 von EC 2013		
Algen	Raphido¬celis subcapitata (Pseudokirchneri ella subcapitata)	k.A.	3	d	NOEC	=	0.732	D	k.A.	4	ICS, 2006, zitiert in IKSR, 2009		

	EFFEKTDATENSAMMLUNG Bentazon													
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert in mg/L	Notiz	Expositionsre gime Reinheit (%) Salinität (%)	Validität	Referenz			
Algen	Raphido¬celis subcapitata (Pseudokirchneri ella subcapitata)	k.A.	3	d	NOEC	=	1.75	D	k.A.	4	ICS, 2006, zitiert in IKSR, 2009			
Algen	Raphido¬celis subcapitata (Pseudokirchneri ella subcapitata)	Wachstumsrate (Fluoreszenz)	48	h	EC10	II	1.77	D	Statisch, >90	2	Cedergreen & Streibig, 2005			
Algen	Raphido¬celis subcapitata (Pseudokirchneri ella subcapitata)	Wachstumsrate	72	h	EC10	II	<u>9.89</u>	В	Statisch, 98.4	1	Jatzek, 2003b zitiert auf Seite 16 in Band 9 von EC 2013			
	Raphido¬celis subcapitata (Pseudokirchneri ella subcapitata)	Geometrischer Mittelwert			EC10	=	4.18							
Wasserpflanz en	Lemna gibba	Wachstum (Frondzahl) für "BAS 351 H (Bentazon)- tech. 53% active ingredient"	14	d	NOEC	=	3.06	A, K	53	3	Hughes und Alexander, 1991b			
Wasser- pflanzen	Lemna gibba	Wachstumsrate (Anzahl Fronds)	7	d	EC10	=	3.2	А	Statisch, 100	1	Hoffmann (2011b) zitiert auf Seite 18 in Band 9 von EC 2013			
Wasser- pflanzen	Lemna gibba	Biomasse (Anzahl Fronds (Yield)	7	d	EC10	=	3.5	А	Statisch, 100	1	Hoffmann (2011b) zitiert auf Seite 18 in Band 9 von EC 2013			
Wasser- pflanzen	Lemna gibba	Biomasse (Trockengewicht) (Yield)	7	d	EC10	=	3.2	А	Statisch, 100	1	Hoffmann (2011b) zitiert auf Seite 16 in Band 9 von EC 2013			
Wasser- pflanzen	Lemna gibba	Wachstumsrate (Anzahl Fronds) für das Bentazon Natrium Salz	7	d	EC10	=	3.8	A, N	Statisch, 91.9	1	Hoffmann (2011a) zitiert auf Seite 18 in Band 9 von EC 2013			
Wasser- pflanzen	Lemna gibba	Biomasse (Anzahl Fronds	7	d	EC10	=	3.2	Α	Statisch, 91.9	1	Hoffmann (2011a) zitiert auf Seite 18 in Band 9 von EC 2013			

	EFFEKTDATENSAMMLUNG Bentazon													
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert in mg/L	Notiz	Expositionsre gime Reinheit (%) Salinität (‰)	Validität	Referenz			
		(Yield) für das Bentazon Natrium Salz												
Wasser- pflanzen	Lemna gibba	Biomasse (Trpckengewicht) (Yield) für das Bentazon Natrium Salz	7	d	EC10	II	2.5	А	Statisch, 91.9	1	Hoffmann (2011a) zitiert auf Seite 18 in Band 9 von EC 2013			
Wasser- pflanzen	Lemna gibba	Wachstumsrate (Trockengewicht) für das Bentazon Natrium Salz	7	d	EC10	=	3.5	А	Statisch, 91.9	1	Hoffmann (2011a) zitiert auf Seite 18 in Band 9 von EC 2013			
Wasser- pflanzen	Lemna gibba	Wachstumsrate (Trockengewicht)	7	d	EC10	=	3.3	Α	Statisch, 100	1	Hoffmann (2011b) zitiert auf Seite 18 in Band 9 von EC 2013			
	Lemna gibba	Geometrischer Mittelwert				=	<u>3.4</u>							
Wasser- pflanzen	Lemna minor	k.A.	14	d	NOEC	=	3.1	D	k.A.	4	ICS, 2006, zitiert in IKSR, 2009			
Wasser- pflanzen	Lemna minor	Wachstumsrate (Frondfläche)	7	d	EC10	=	1.14	С	>90	3	Cedergreen & Streibig, 2005			
Wasser- pflanzen	Lemna minor	Wachstumsrate (Frondfläche) - neu ausgewertet nach OECD 211	7	d	EC10	=	2.73	С	Statisch >90	2	Cedergreen & Streibig, 2005			
Krebstiere	Daphnia magna	k.A.	21	d	NOEC	=	120	D	k.A.	4	ICS, 2006, zitiert in IKSR, 2009			
Krebstiere	Daphnia magna	k.A.	21	d	NOEC	2	101.2	А	Semi- statisch, k.A.	1	Horn 2012; GLP Studienbericht von BASF zur Verfügung gestellt			
Fische	Cyprinus carpio	k.A.	21	d	NOEC	>	20	D	k.A.	4	BBA, 1993, zitiert in IKSR, 2009			
Fische	Pimephales promelas	Early Life Stage (Bentazon Natrium Salz)	35	d	NOEC	>	10	B, N	91.9	1	Anonymus 2011b zitiert in EC 2013			
				chron	ische un	ıd su	bchronisch	e Daten m	narin					
Algen	Chaetoceros gracilis	Wachstumsrate (Zellzahl)	72	h	NOEC	=	10	С	k.A.	2	Hourmant et al., 2009			

	EFFEKTDATENSAMMLUNG Bentazon										
Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert in mg/L	Notiz	Expositionsre gime Reinheit (%) Salinität (‰)	Validität	Referenz
Algen	Zostera marina	Chlorophyll a/b Verhältnis	72	h	LOEC	=	0.024	С	k.A 12-15‰	4	Nielsen & Dahllöf, 2007
Algen	Zostera marina	RNA/DNA Verhältnis	72	h	LOEC	=	2.4	С	k.A 12-15‰	4	Nielsen & Dahllöf, 2007
Algen	Zostera marina	Wachstumsrate (Gewicht)	72	h	LOEC	Ш	2.4	С	k.A 12-15‰	4	Nielsen & Dahllöf, 2007
Algen	Zostera marina	Chlorophyll a/b Verhältnis	72	h	NOEC	11	0.0024	C, H	k.A 12-15‰	3	Nielsen & Dahllöf, 2007
Algen	Zostera marina	RNA/DNA Verhältnis	72	h	NOEC	=	0.24	C, H	k.A 12-15‰	3	Nielsen & Dahllöf, 2007
Algen	Zostera marina	Wachstumsrate (Länge)	72	h	NOEC	Ш	2.40	C, H	k.A 12-15‰	3	Nielsen & Dahllöf, 2007
Algen	Zostera marina	Wachstumsrate (Gewicht)	72	h	NOEC	=	0.24	C, H	k.A 12-15‰	3	Nielsen & Dahllöf, 2007
Algen	Zostera marina	Wachstumsrate (Gewicht)	72	h	NOEC	=	1.2	C, I	k.A 12-15‰	4	Nielsen & Dahllöf, 2007

 Tabelle 3: Effektdatensammlung für Bentazon Formulierungen. Alle Werte beziehen sich auf die Aktivsubstanz.


Tests mit Formulierungen											
Formulierung	Sammel- bezeichnung	Organismus	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert in mg/L Salinitiät (%)	Notiz	Validität	Referenz
			akute D	aten	limn	isch		1		ı	
Bentazone 480 g/L SL	Cyano- bakterien	Anabaena flos-aquae	Wachstumsrate	72	h	EC50	=	24.9	В, М	1	List of Endpoints in EC 2013
Bentazone 480 g/L SL	Cyano- bakterien	Anabaena flos-aquae	Biomasse	72	h	EC50	II	4.15	В, М	1	List of Endpoints in EC 2013
Basagran (480 g/l)	Algen	Pseudokirchneriella subcapitata	Wachstumsrate (Fluoreszenz)	48	h	EC50	=	42.4	C,D	2	Cedergreen & Streibig, 2005
Bentazone 480 g/L SL	Algen	Pseudokirchneriella subcapitata	Wachstumsrate	72	h	EC50	=	17.8	D, M	1	List of Endpoints in EC 2013
Bentazone 480 g/L SL	Algen	Pseudokirchneriella subcapitata	Biomasse	72	h	EC50	=	10.7	D, M	1	List of Endpoints in EC 2013
BAS 351 32H	Wasser- pflanzen	Lemna gibba	Wachstumsrate	7	d	EC50	=	9.3	D, M	1	List of Endpoints EC 2013
BAS 351 32H	Wasser- pflanzen	Lemna gibba	Biomasse (Yield)	7	d	EC50	=	4.9	D, M	1	List of Endpoints in EC 2013
Bentazone 480 g/L SL	Wasser- pflanzen	Lemna gibba	Wachstumsrate	7	d	EC50	=	7.2	D, M	1	List of Endpoints in EC 2013
Bentazone 480 g/L SL	Wasser- pflanzen	Lemna gibba	Biomasse (Yield)	7	d	EC50	=	3.5	D, M	1	List of Endpoints in EC 2013
BAS 351 32H	Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	=	>48.6	D, M	1	List of Endpoints in EC 2013
Bentazone 480 g/L SL	Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	Ш	>100	D, M	1	List of Endpoints in EC 2013
Basagran (480g/l)	Fische	Gambusia affinis	Mortalität	96	h	LC50		1860	C, M	3	Leung et al., 1983
BAS 351 32H	Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	>	100	D, M	1	List of Endpoints in EC 2013

Bentazone 480 g/L SL	Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	>	48.6	D, M	1	List of Endpoints in EC 2013
akute Daten marin											
Basagran (480g/l)	Cyano- bakterien	Nostoc muscorum	Phycobiliproteingehalt	72	h	EC50	П	1634	C, M, L	3	Galhano et al., 2010
Basagran (480g/l)	Cyano- bakterien	Nostoc muscorum	Akkumulation der Kohlenhydrate	72	h	EC50	Ш	529	C, M, L	3	Galhano et al., 2010
Basagran (480g/l)	Cyano- bakterien	Nostoc muscorum	Photosynthese und Sauerstoffentwicklung	72	h	EC50	II	240	C,M	3	Galhano et al., 2010
Basagran (480g/l)	Cyano- bakterien	Nostoc muscorum	Dunkelatmung (Sauerstoffverbrauch)	72	h	EC50	II	480	C, M	3	Galhano et al., 2010
Basagran (480g/l)	Cyano- bakterien	Nostoc muscorum	Carotinoidgehalt	72	h	EC50	II	1033	C, M, L	3	Galhano et al., 2010
Basagran (480g/l)	Cyano- bakterien	Nostoc muscorum	Biomasse (Trockengewicht)	72	h	EC50	=	>480	C, M, L	3	Galhano et al., 2010
Basmais (80g/kg)	Algen	Chaetoceros gracilis	Wachstumsrate (Zellzahl)	72	h	EC50	=	0.06	C, M	2	Hourmant et al., 2009
Basagran (480g/l)	Algen	Monoraphidium pusillum	Sauerstoffentwicklung für den Wildtyp Stamm	6	d	EC50	II	31.2	C, M	2	Lundegaardh, 1992
Basagran (480g/l)	Algen	Monoraphidium pusillum	Wachstumsrate (Zellzahl) für den Wildtyp Stamm	6	d	EC50	II	108.1	C , M	2	Lundegaardh, 1992
Basagran (480g/l)	Fische	Aphanius fasciatus	Mortalität	96	h	LC50	<>	307; 614	D,M	4	Boumaiza et al., 1979
"kommerzielle Lösung mit 600g a.i./l"	Algen	Skeletonema costatum	Wachstumsrate (Fluoreszenz)	48	h	EC50	Ш	12.8 31‰	C, M	3	Macedo et al., 2008
"kommerzielle Lösung mit 600g a.i./l"	Algen	Skeletonema costatum	Wachstumsrate (Fluoreszenz)	72	h	EC50	Ш	24 31‰	C, M	3	Macedo et al., 2008
			chronische und sub	chron	isch	e Daten	limni	isch			
Basagran (480 g/l)	Algen	Pseudokirchneriella subcapitata	Wachstumsrate (Fluoreszenz)	48	h	EC10	=	0.888	D, M	2	Cedergreen & Streibig, 2005
Basagran	Krebstiere	Daphnia magna	k.A.	21	d	NOEC	=	120	D, M	1	EC, 2000
BAS 351 32H	Krebstiere	Daphnia magna	k.A.	21	d	NOEC	^	120	D, M	1	List of Endpoints in EC 2013
Basagran (480g/l)	Krebstiere	Daphnia magna	k.A.	21	d	NOEC	=	32	A, M	1	List of Endpoints in EC 2013

Basagran	Fische	Oncorhynchus mykiss	k.A.	28	d	NOEC	>	48	D, M	1	EC, 2000
BAS 351 32H	Fische	Oncorhynchus mykiss	k.A.	28	d	NOEC	=	48	D, M	1	List of Endpoints in EC 2013
Basagran (480g/l)	Fische	Oncorhynchus mykiss	k.A.	28	d	NOEC	=	5.91	A,M	1	List of Endpoints in EC 2013
chronische und subchronische Daten marin											
Basmais (480g/kg)	Algen	Chaetoceros gracilis	Wachstumsrate (Zellzahl)	72	h	NOEC	=	0.01	C, M	2	Hourmant et al., 2009
"kommerzielle Lösung mit 600g a.i./l"	Algen	Skeletonema costatum	Wachstumsrate (Fluoreszenz)	48	h	NOEC	=	1.4 31‰	C, M	3	Macedo et al., 2008
"kommerzielle Lösung mit 600g a.i./l"	Algen	Skeletonema costatum	Wachstumsrate (Fluoreszenz)	72	h	NOEC	=	11.3 31‰	C, M	3	Macedo et al., 2008

- A gemessene Testkonzentrationen für Effektbestimmung verwendet
- B nominale Testkonzentrationen für Effektbestimmung verwendet, gemessene Wiederfindung ± 20 % der nominalen Konzentration
- C nominale Testkonzentrationen für Effektbestimmung verwendet
- D Keine Angabe darüber ob nominale oder gemessene Konzentration verwendet wurde
- E Test im Dunkeln durchgeführt.
- F Lösungsmittelkonzentration >0.1%
- G Bei der statistischen EC50-Bestimmung wurden variable Effektmaxima zugelassen (nicht zwischen 0 und 100% Effekt skaliert), so dass die EC50 nicht zwingend mit einem Effekt von 50% übereinstimmen
- H Spacing zwischen den Testkonzentrationen zu gross für eine NOEC Bestimmung
- NOEC = LOEC/2, da Effekt am LOEC zwischen 10 und 20%
- J keine Angabe über Herkunft der Testsubstanz oder ob es sich um eine Formulierung oder die Reinsubstanz handelt
- K von der EFSA nicht in die "List of Endpoints" übernommen
- L angegebener EC50 liegt oberhalb der höchsten getesteten Konzentration von 480.6 mg/l
- M umgerechnet auf den Anteil des Wirkstoffs
- N nicht klar, ob es sich auf den Bentazon, oder Bentazon-Na bezieht. Bentazon macht 91.3% von Bentazon-Na aus.

5 Graphische Darstellung der Effektdaten

Abbildung 1: Grafische Darstellung aller validen Kurzzeit (KZ)- und Langzeit (LZ)-Effektdaten aus Tabelle 2 für Bentazon. Mit * gekennzeichnete Werte sind > als der angegebene Wert. Die Standardabweichung der logarithmierten EC50-Werte beträgt 0.48

Wie in Abbildung 1 zu erkennen ist, ist im akuten Datensatz für Bentazon die Gruppe der Primärproduzenten die empfindlichste. Im chronischen Datensatz liegen nur valide spezifische Effektwerte für Primärproduzenten vor. Für Krebstiere und Fische liegen aber noch ungebundene Werte vor. Man kann grundsätzlich davon ausgehen, dass Algen und Wasserpflanzen am empfindlichsten reagieren werden, da es sich bei Bentazon um ein Herbizid handelt, welches die Photosynthese hemmt und somit vor Allem für Pflanzen toxisch ist.

5.1 Vergleich marine/limnische Organismen

Es liegen zu wenig valide marine Effektdaten vor um zu beurteilen, ob sich die Empfindlichkeit mariner Organismen signifikant von derjenigen der limnischer Organismen unterscheidet. Da es

keine Indizien gibt, die dafür sprechen, dass marine Organismen empfindlicher sein sollten als limnische, werden die Daten gepoolt.

6 Herleitung der EQS

Um chronische und akute Qualitätsziele herzuleiten, kann die Assessmentfaktor (AF) - Methode auf der Basis von akuten und chronischen Toxizitätsdaten verwendet werden. Dabei wird mit dem tiefsten chronischen Datenpunkt ein AA-EQS (Annual-Average-Environmental-Quality-Standard) und mit dem tiefsten akuten Datenpunkt ein MAC-EQS (Maximum-Acceptable-Concentration-Environmental-Quality-Standard) abgeleitet. Wenn der Datensatz umfassend genug ist, können diese EQS zusätzlich mittels einer Speziessensitivitätsverteilung (SSD) bestimmt werden. Valide Mikro-/Mesokosmosstudien dienen einerseits zur Verfeinerung des AF, der durch eine SSD hergeleitet wurde. Andererseits können sie auch direkt zur Bestimmung eines EQS verwendet werden. Die Evaluation der Mikro- und Mesokosmosstudien basiert auf den Qualitätsleitlinien beschrieben im TGD for EQS.

7 Chronische Toxizität

7.1 AA-EQS Herleitung mit AF-Methode

Es liegen valide und spezifische chronische Effektwerte für die Organismengruppen der Algen/Wasserpflanzen und Krebstiere vor (Tabelle 5). Für Fische gibt es nur einen ungebundenen Wert.

Tabelle 4: Übersicht der kritischen chronischen Toxizitätswerte für Wasserorganismen für Bentazon.

Gruppe	Spezies	Wert	Konz (mg/L)	Referenz
Algen/ Höhere Wasserpflanzen	Lemna minor	EC10	2.73	Cedergreen & Streibig, 2005
Kleinkrebse	Daphnia magna	NOEC	≥101.2	Horn 2012
Fische	Pimephales promelas	NOEC	≥10	Anonymus 2011b zitiert in EC 2013

Da für alle drei geforderten taxonomischen Gruppen NOEC oder EC10 Werte vorliegen wird ein Sicherheitsfaktor von 10 gewählt.

7.2 AA-EQS mit SSD-Methode

Die Ableitung eines AA-EQS mittels SSD ist aufgrund mangelnder chronischer Daten nicht möglich.

7.3 AA-EQS aus Mikro-/Mesokosmosstudien

Es sind keine validen Mikro- oder Mesokosmosstudien vorhanden, so dass ein AA-EQS basierend auf Mikro-/Mesokosmenstudien nicht abgeleitet werden kann.

8 AkuteToxizität

8.1 MAC-EQS Herleitung mit AF-Methode

Es liegen valide EC50-Werte für die Organismengruppen der Protozoa, Bakterien, Algen/Wasserpflanzen, Krebstiere und Fische vor (Tabelle 5).

Tabelle 5: Übersicht der kritischen akuten Toxizitätswerte für Wasserorganismen für Bentazon.

3									
Gruppe	ruppe Spezies		Konz (mg/L)	Referenz					
Höhere Wasserpflanzen	Lemna minor	EC50	4.68	Cedergreen & Streibig, 2005					
Krebstiere	Daphnia magna	EC50	≥100	Jatzek 2003b zitiert in EC 2013					
Fische	Oncorhynchus mykiss	LC50	≥100	Anonymus in EC 2013 zitiert in EC 2013					
	EC50 für weitere Arten (ohne > Werte)								
Protozoa	Spirostomum ambiguum	EC50	42.3	Nalecz-Jawecki et al., 2002					
Bakterien	Photobacterium phosphoreum	EC50	28.58	Ruiz et al. 1997					
Grünalgen	Chlorella fusca	EC50	42.5	Faust et al., 1993					
Grünalgen	Pseudokirchneriella subcapitata	EC50 213		Jatzek, 2003 zitiert in EC 2013, Cedergreen & Streibig, 2005 (geometrischer Mittelwert)					
Kieselalgen	Kieselalgen Chaetoceros gracilis		150	Hourmant et al., 2009					

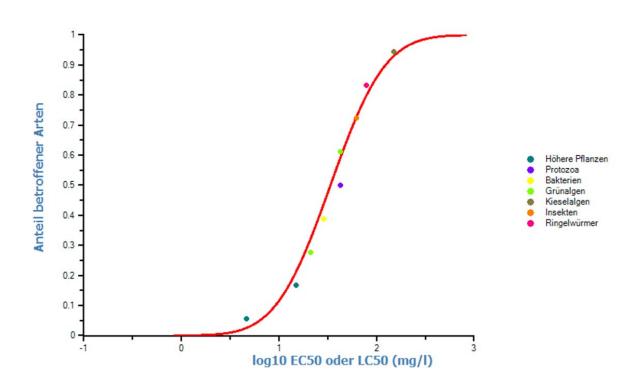
Höhere Wasserpflanzen	Lemna gibba	EC50	14.9	Hoffmann 2011b zitiert in EC 2013, Hoffmann 2011a zitiert in EC 2013 (geometrischer Mittelwert)
Insekten	Chironomus riparius	LC50	62.3	Mäenpää et al., 2003
Ringelwürmer	Lumbriculus variegatus	LC50	79.1	Mäenpää et al., 2003

Tabelle 6: Risikoklassierung der akuten aquatischen Toxizität anhand der niedrigsten gemessenen EC50-Werte nach der Europäischen Kommission (UN 2015).

Risikoklasse	Niedrigster EC50-Wert	Erreichter Wert
Nicht eingestuft	>100mg/l	
schädlich	<100mg/l; >10 mg/l	
Giftig	<10mg;>1mg/l	х
Sehr giftig	<1mg/l	

Bentazon wird nach TGD for EQS als giftig eingestuft (Tabelle 6).

Da Effektdaten von drei taxonomischen Gruppen vorliegen, kann ein AF von 100 verwendet werden. Der AF kann gemäss TGD for EQS (Kommission der Europäischen Gemeinschaften, 2011) auf 10 erniedrigt werden, wenn entweder die Standardabweichung der logarithmierten EC50-Werte <0.5 ist (hier 0.42), oder der Wirkmechanismus bekannt ist und ein repräsentativer Vertreter der empfindlichsten Art im Effektdatensatz mit dem tiefsten Wert vertreten ist. Der tiefste akute Wert wurde bei der Wasserlinse *Lemna minor* beobachtet (EC50 = 4.68 mg/L), welche zu den für ein Herbizid erwartungsgemäss empfindlichsten Organismengruppe gehört, den Pflanzen. Also wird dieser tiefste Wert mit ein AF von 10 verrechnet und führt zum folgenden Kurzzeitqualitätskriterium:


MAC-EQS =
$$4.68 \text{ mg/L} / 10 = 0.47 \text{ mg/L} = 470 \mu g/L$$

8.2 MAC-EQS mit SSD Methode

Die Ableitung eines MAC-EQS mittels SSD ist nicht möglich, da nicht genügend valide, spezifische Daten vorhanden sind. Es fehlen belastbare Daten für Krebstiere, Fische und eine zweite Gruppe der Chordata. Für diese sind allerdings > Werte vorhanden, die zeigen, dass diese taxonomischen

Gruppen nicht empfindlicher sind als die Gruppen, für die valide EC50 Werte vorhanden sind. Auch handelt es sich bei Bentazon um ein Herbizid und da für höhere Wasserpflanzen Grünalgen und Kieselalgen 5 valide EC50 vorhanden waren, konnte dennoch eine SSD gemacht werden (Abbildung 3).

SSD akute Toxizität von Bentazon

Abbildung 3: SSD für akute Ökotoxizitätswerte von Bentazon. Es liegen nur 9 Datenpunkte vor, daher dient diese SSD nicht der MAC-EQS Herleitung.

Mit dem Programm ETX 2.0 wurde basierend auf den Daten in Tabelle 5 ein HC_{05} von 5.95 mg/l (1.56-12.3) bestimmt. Die SSD erfüllt nicht die minimale Anforderung von 10 Datenpunkten. Daher kann sie nicht zur EQS Herleitung verwendet werden. Mit dem Standard-Sicherheitsfaktor von 10 ergäbe sich aber ein MAC-EQS von 595 μ g/l, welcher sich nur um den Faktor 1.3 von dem MAC-EQS nach AF-Methode unterscheidet. Dies zeigt, dass der MAC-EQS aus der AF-Methode robust ist.

8.3 MAC-EQS aus Mikro-/Mesokosmosstudie

Es sind keine validen Mikro- oder Mesokosmosstudien vorhanden, so dass ein MAC-EQS basierend auf Mikro-/Mesokosmosstudien nicht abgeleitet werden kann.

9 Bewertung des Bioakkumulationspotentials und der sekundären Intoxikation

Nach dem TGD for EQS (EC, 2011) soll zur Abschätzung des Risikos einer sekundären Intoxikation zunächst das Bioakkumulationspotentials einer Substanz bestimmt werden. Dabei liefert ein gemessener Biomagnifikationsfaktors (BMF) von >1 oder ein Biokonzentrationsfaktors (BCF) >100 einen Hinweis auf ein Bioakkumulationspotential. Liegen keine verlässlichen BMF oder BCF Daten vor, kann stattdessen der log K_{OW} zur Abschätzung verwendet werden, welcher ab einem Wert von >3 auf ein Bioakkumulationspotential hinweist. Der log K_{OW} für Bentazon beträgt laut Review Report (EC, 2000, Seite 8) 0.46 bei pH 7, es besteht somit ein geringes Bioakkumulationspotential. In ihrem Bericht zur "Reregistration Eligibility Decision" für Bentazon gibt die US-EPA (1995) einen BCF von 1.4 (28 Tage Aufnahme und 17 Tage Depuration) bezogen auf den gesamten Fisch (*Lepomis macrochirus*) an. Der "steady-state" wurde nach 7 Tagen erreicht. Somit ist eine Bioakkumulation unwahrscheinlich.

10 Schutz der aquatischen Organismen

Für Bentazon liegen valide akute und chronische Effektdaten für Arten aus mehreren taxonomischen Gruppen vor. Sowohl der MAC-EQS als auch der AA-EQS basieren auf der Toxizität gegenüber der Wasserlinse *Lemna minor*. Mit den hier hergeleiteten Qualitätstandards sollte ein ausreichender Schutz für alle Organismen im aquatischen Lebensraum gegeben sein:

AA-EQS = $270 \mu g/L$ MAC-EQS = $470 \mu g/L$

Die Gefahr der Bioakkumulation und damit einer sekundären Intoxikation erscheint gering. IKSR (2009) ermittelte einen MAC-EQS von 450 μ g/L und einen AA-EQS von 73 μ g/L. Das Umweltbundesamt (UBA, Berlin, Deutschland) leitete ein Langzeitqualitätskriterium von 70 μ g/L her (Kussatz et al., 1999) und auch INERIS (2009) hat sehr ähnliche Werte hergeleitet (AA-EQS von 70 und MAC-EQS von 450 μ g/l). Da nach der Datenaktualisierung nun auch eine chronische Studie zu *D. magna* vorliegt, kann der Sicherheitsfaktor von 50 auf 10 erniedrigt werden, was zu einem

tieferen AA-EQS führt. Der hier vorliegende Datensatz ist unserer Einschätzung nach der vollständigste und berücksichtigt als erster sowohl die Daten aus dem DAR von 2013 (EC, 2013) als auch Daten aus wissenschaftlichen Zeitschriften. Die Oberflächengewässerverordnung von Deutschland gibt einen tieferen AA-EQS von 0.1 µg/L an (OGewV2016, Seite 44), der aber vermutlich kein effektbasierter Wert sondern ein Vorsorgewert ist.

11 Änderungen gegenüber der Version vom 19.07.2013

Im Rahmen der Überprüfung der prioritären Stoffe unter der Wasserrahmenrichtlinie fand eine Datenaktualisierung unter der Leitung des Joint Research Centre und unter Beteiligung der Herstellerfirma BASF statt. Das Dossier wurde zwar nicht finalisiert, aber die Datenrecherche und Bewertung wurde abgeschlossen. Da es in diesem Rahmen zu einer Einigung mit BASF über die relevanten und validen Studien kann, wurde von einer weiteren Datenrecherche für die Revision des Oekotoxzentrum EQS Dossiers abgesehen. Sowohl der AA-EQS als auch der MAC-EQS haben sich geändert, da für die kritische Studie von Cedergreen und Streibig 2005 die Rohdaten zur Verfügung gestellt wurden und so die Daten neu ausgewertet werden konnten.

12 Referenzen (Stand der Literaturrecherche: 11.02.2015)

AL-Mendoufi, O. und Ashton, F. (1984) Bentazon Influence on Selected Metabolic Processes of Isolated

Bean Leaf Cells. Journal of Plant Growth Regulation 3:121-126

Andersson M und Kreuger J (2011) Preliminära riktvärden för växtskyddsmedel i ytvatten. Beräkning av riktvärden för 64 växtskyddsmedel som saknar svenska riktvärden. Teknisk rapport 144. Institutionen för mark och miljö, Biogeofysik och vattenvård Sveriges lantbruksuniversitet Department of Soil and Environment Swedish University of Agricultural Sciences, Uppsala 2011.

BASF (2014) BASF Comments on the JRC 2014 Dossier for the Active Substance Bentazone. Dr. Gerald Maier, Dr. Jiafan Wang, Dr. Volker Laabs17.12.2014

BBA (1993) Biologische Bundesanstalt für Land- und Forstwirtschaft (BBA). Wirkstoffdatenblatt Bentazon (Entwurf). BBA / 0335 / 93 / 08. [Zitiert in IKSR, 200.9].

Boumaiza M., Ktari M.H. and Vitiello P. (1979) Acute toxicity for *Aphanius fasciarus* of various pesticides used in Tunisia. Toxicité de divers pesticides utilises en Tunisie pour *Aphanius fasciatus* nardo, 1827 (pisces, cyprinodontidae) 56(3): 307-342.

Cedergreen N. and Streibig J.C. (2005) The toxicity of herbicides to non-target aquatic plants and algae: Assessment of predictive factors and hazard. Pest Management Science 61(12): 1152-1160

- Chiron S., Barceló D., Abian J., Ferrer M., Sanchez-Baeza F. and Messeguer A. (1995) Comparative photodegradation rates of alachlor and bentazone in natural water and determination of breakdown products. Environmental Toxicology and Chemistry 14(8): 1287-1298
- **EC** (2000) European Commission (EC), Review report for the active substance bentazon. 7585/VI/97-final. Finalised in the Standing Committee on Plant Health at its meeting on 13 July 2000 in view of the inclusion of bentazon in Annex I of Directive 91/414/EEC.
- **EC** (2011) European Commission (EC), Technical Guidance For Deriving Environmental Quality Standards. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance Document No. 27.
- **EC** (2013) European Commission (EC) Betazon Draft Renewal Assessment Report prepared according to Commission regulation (EU) No 1141/2010. Second programme (AIR-2) for the approval of an active substance under Regulation (EU) No 1107/2009 Rapporteur Member State: The Netherlands December 2013
- **EPI** (2011) Version 4.10 .The EPI (Estimation Programs Interface) Suite[™] . A Windows®-based suite of physical/chemical property and environmental fate estimation programs developed by the EPA's Office of Pollution Prevention Toxics and Syracuse Research Corporation (SRC).
- Faust M., Altenburger R., Boedeker W. and Grimme L. (1993) Additive effects of herbicide combinations on aquatic non-target organisms. Science of the total environment 134: 941-952
- **Galhano V., Peixoto F., Gomes-Laranjo J. and Fernández-Valiente E.** (2010) Comparative toxicity of bentazon and molinate on growth, photosynthetic pigments, photosynthesis, and respiration of the Portuguese ricefield cyanobacterium *Nostoc muscorum*. Environmental toxicology 25(2): 147-156
- **Grossmann K., Berghaus R. and Retzlaff G.** (1992) Heterotrophic plant cell suspension cultures for monitoring biological activity in agrochemical research. Comparison with screens using algae, germinating seeds and whole plants. Pesticide science 35(3): 283-289
- Horn 2012; GLP Studienbericht von BASF zur Verfügung gestellt
- **Hourmant A., Amara A., Pouline P., Durand G., Arzul G. and Quiniou F.** (2009) Effect of bentazon on growth and physiological responses of marine diatom: *Chaetoceros gracilis*. Toxicology Mechanisms and Methods 19(2): 109-115
- **Hughes J., S; and Alexander M.M.** (1991a) The toxicity of Bentazon (BAS 351 H Tacg. A.i.) to *Anabeana flos-aquae*. Sponsor: BASF Corporation Agricultural Chemicals P.O. Box 13528. Reasearch Triangle Park, NC 27709. Performing Malcolm Pirnie, Inc, 707 Old Sawmill River Road, Tarrytown, NY 10591. Eine Zusammenfassung der Studie wurde dem Oekotoxzentrum am 22.04.2013 von BASF (Maike Habekost) zur Verfügung gestellt.
- **Hughes J., S, and Alexander M.M.** (1991b) The Toxicity of Bentazon (BAS 351 H Tech a.i.) to *Lemna gibba* G3. Sponsor: BASF Corporation agricultural Chemicals P.O. Box 13528. Research Trangle Park, NC 27709. Performing Laboratry: Malcolm Pirnie, Inc. 707 Old Sawmill River Road Tarrytown, NY 10591. Eine Zusammenfassung der Studie wurde dem Oekotoxzentrum am 22.04.2013 von BASF (Maike Habekost) zur Verfügung gestellt.

ICS (2006) ICS-Datenbank, Informationssystem Chemikaliensicherheit (ICS). Stand 2006. Umweltbundesamt, Berlin, Deutschland. [Zitiert in IKSR, 2009].

IKSR (2009) Internationale Kommission zum Schutz des Rheines (IKSR) Koblenz, Deutschland. Ableitung von Umweltqualitätsnormen für die Rhein-relevanten Stoffe. Bericht Nr. 164. http://www.iksr.org/fileadmin/user_upload/Dokumente_de/Berichte/Bericht_Nr. 164.pdf. Datenzusammenstellung und Redaktion: Denis Besozzi, Agence de l'Eau Rhin-Meuse, Metz, Dorien ten Hulscher, Rijkswaterstaat, Lelystad, Martien Janssen, RIVM, Bilthoven, Dr. Klaus Maslowski, WWA Aschaffenburg, Dieter Michael Saha, IKSR, Koblenz, Dieter Schudoma, UBA, Berlin, Dr. Martin Wimmer, BLFUW, Wien, Beate Zedler, HMUELV, Wiesbaden.

INERIS (2012): Bentazon. Nationales Institut für Industrie- und Umweltrisiken, Frankreich. http://www.ineris.fr/substances/fr/substance/getDocument/2895

Jatzek (2003) Report: BAS 351 H (Bentazone) - Determination of the inhibitory effect on the cell mulitplication of unicellular green algae. Performing Laboratory: Experimental Toxicology and Ecology BASF Aktiengesellschaft., 67056 Ludwigshafen/Rhein, Germany. Eine Zusammenfassung der Studie wurde dem Oekotoxzentrum von BASF (Maike Habekost) am 22.04.2013 zur Verfügung gestellt.

Kampioti A.A., Borba da Cunha A.C., López de Alda M. and Barceló D. (2005) Fully automated multianalyte determination of different classes of pesticides, at picogram per litre levels in water, by on-line solid-phase extraction—liquid chromatography—electrospray—tandem mass spectrometry. Analytical and bioanalytical chemistry 382(8): 1815-1825

Klimisch H.J., Andreae M. and Tillmann U. (1997) A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology 25(1): 1-5

Kussatz C., Schudoma D., Throl C., Kirchhoff N. and Rauert C. (1999) Stoffdatenblatt Bentazon aus: Zielvorgaben für Pflanzenschutzmittelwirkstoffe zum Schutz oberirdischer Binnengewässer, Umweltbundesamt, Berlin, Texte 76/99.

http://webetox.uba.de/webETOX/public/basics/literatur.do?id=1358.

Leung T.-S., Naqvi S.M. and Leblanc C. (1983) Toxicities of two herbicides (Basagran, Diquat) and an algicide (Cutrine-plus) to mosquitofish *Gambusia affinis*. Environmental Pollution Series A, Ecological and Biological 30(2): 153-160

Lundegaardh B. (1992) Characterization of three herbicide-resistant strains of the unicellular green alga, Monoraphidium pusillum, 3: Determination of the resistance mechanism by luminescence. Swedish Journal of Agricultural Research 22

Macedo R., Lombardi A., Omachi C. and Rörig L. (2008) Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom *Skeletonema costatum*. Toxicology in Vitro 22(3): 716-722

Mäenpää K.A., Sormunen A.J. and Kukkonen J.V. (2003) Bioaccumulation and toxicity of sediment associated herbicides (ioxynil, pendimethalin, and bentazone) in *Lumbriculus variegatus* (Oligochaeta) and *Chironomus riparius* (Insecta). Ecotoxicology and Environmental Safety 56(3): 398-410

Michel A., Johnson R.D., Duke S.O. and Scheffler B.E. (2004) Dose-response relationships between herbicides with different modes of action and growth of *Lemna paucicostata*: An improved ecotoxicological method. Environmental Toxicology and Chemistry 23(4): 1074-1079

Munkegaard M., Abbaspoor M. and Cedergreen N. (2008) Organophosphorous insecticides as herbicide synergists on the green algae *Pseudokirchneriella subcapitata* and the aquatic plant *Lemna minor*. Ecotoxicology 17(1): 29-35

Nalecz-Jawecki G., Kucharczyk E. and Sawicki J. (2002) The sensitivity of protozoan Spirostomum ambiguum to selected pesticides. Fresenius Environmental Bulletin 11(2): 98-101

Nielsen L.W. and Dahllöf I. (2007) Direct and indirect effects of the herbicides Glyphosate, Bentazone and MCPA on eelgrass (*Zostera marina*). Aquatic Toxicology 82(1): 47-54

Nishiuchi Y. and Asano K. (1979) Toxicity of Agricultural Chemicals to Some Freshwater Organisms - 59, Suisan Zoshoku 27(1): 48-55. [Zitiert im Aquire Report of the US. EPA (2013)].

OECD (2006). Lemna sp. growth inhibition test. OECD guidelines for testing of chemicals, No. 221. Organisation for Economic Cooperation and Development, Paris, France.

Office of Pesticides Programs (2000) Pesticide Ecotoxicity Database. Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.

OGewV (2016). Verordnung zum Schutz der Oberflächengewässer (Oberflächengewässerverordnung – OGewV) vom 20. Juni 2016. BGBI. I S. 1373.

Ruiz M., López-Jaramillo L., Redondo M. and Font G. (1997) Toxicity assessment of pesticides using the Microtox test: application to environmental samples. Bulletin of Environmental Contamination and Toxicology 59(4): 619-625

Shrivastava R. (2005) Effect of herbicides on biochemical and physiological properties of *Ascillaoria laete-virens*. Asian Journal of Microbiology, Biotechnology & Environmental Science 10 (3) p: 563-567.

Sigma-Aldrich (2013) Sigma-Aldrich Co. LLC. www.sigmaaldrich.com

UN (2015) Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 6th revised edition ed. United Nations, New York.

US EPA (1995) Reregistration Eligibility Decision (RED) Bentazon. Environmental Protection Ageny USA (US EPA). EPA 738-R-94-029