2015

Schweizerisches Zentrum für angewandte Ökotoxikologie Centre Suisse d'écotoxicologie appliquée Eawag-EPFL

EQS - Vorschlag des Oekotoxzentrums für: Linuron

Ersterstellung: 17.09.2012 (Erste Literaturrecherche)

18.07.2013 (Einarbeitung des Gutachtens)

Aktualisierung: 09.11.2015 (Stand der Literaturrecherche)

1 Qualitätskriterien-Vorschläge

CQK (AA-EQS): **0.26 μg/L** (unverändert)

AQK (MAC-EQS): 1.37 μg/L (unverändert)

Das chronische Qualitätskriterium (CQK ≜ AA-EQS) und das akute Qualitätskriterium (AQK ≜ MAC-EQS) wurden nach dem TGD for EQS der Europäischen Kommission (EC, 2011) hergeleitet. Damit die Dossiers international vergleichbar sind, wird im Weiteren die Terminologie des TGD verwendet.

2 Physikochemische Parameter

In Tabelle 1 werden Identität, chemische und physikalische Parameter für Linuron angegeben. Wo bekannt, wird mit (exp) spezifiziert, dass es sich um experimentell erhobene Daten handelt, während es sich bei mit (est) gekennzeichneten Daten um abgeschätzte Werte handelt. Wenn keine dieser beiden Angaben hinter den Werten steht, fand sich in der zitierten Literatur keine Angabe.

Tabelle 1: Geforderte Angaben zu Linuron nach dem TGD for EQS (EC 2011). Zusätzliche Angaben in kursiv. **exp** = experimentell erhobene Werte, **est** = geschätzte Werte

Eigenschaften	Name/Wert	Referenz
IUPAC Name	3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea	EC 2002
Chemische Gruppe	Phenylharnstoff	Tomlin 2009
Strukturformel	CI O CH ₃ NH O-CH ₃	US EPA 2011
Summenformel	$C_9H_{10}CI_2N_2O_2$	EC 2002
CAS-Nummer	330-55-2	EC 2002
EINECS-Nummer	206-356-5	Tomlin 2009
SMILES-code	O=C(N(OC)C)Nc(ccc(c1CL)CL)c1	EPI 2011
Molekulargewicht (g·mol⁻¹)	249.1	EC 2002
Schmelzpunkt (°C)	93 – 95 93 (exp)	EC 2002 EPI 2011
Siedepunkt (°C)	365.91 (est) 180 – 190°C	EPI 2011 Crane <i>et al</i> . 2008
Dampfdruck (Pa)	2.0 · 10 ⁻³ (20°C/24°C) 5.1 · 10 ⁻⁵ (20°C) 1.91 · 10 ⁻⁴ (exp; 25°C)	EC 2002 Tomlin 2009 EPI 2011
Henry-Konstante (Pa·m³·mol⁻¹)	2.0 · 10 ⁻⁴ 6.33 · 10 ⁻⁴ (exp)	EC 2002 EPI 2011
Wasserlöslichkeit (g·L ⁻¹)	52.7 · 10 ⁻³ (pH 5, 20°C) 63.8 · 10 ⁻³ (pH 7, 20°C) 74.5 · 10 ⁻³ (pH 9, 20°C)	EC 2002
	81 · 10 ⁻³ (25°C)	US EPA 1995

Dissoziationskonstante (pK _a)	Keine Dissoziation in Wasser	EC 2002; EPI 2011
n-Octanol/Wasser	3.0	EC 2002
Verteilungskoeffizient (log K_{ow})	3.2 (exp)	EPI 2011
	2.76	Briggs 1981, zitiert in Caux et al. 1998
Sediment/Wasser	2.7 (exp; log K _{oc})	EPI 2011
Verteilungskoeffizient	2.83 (exp; log K _{oc})	Means und Wijayaratne
$(\log K_{oc} \operatorname{oder} \log K_{\rho})$		1982, zitiert in Caux <i>et al.</i> 1998
Hydrolysestabilität in Wasser (Halbwertszeit)	1220 Tage (pH 5); 1460 (pH 7); 1080 (pH 9)	EC 2002
	Kein relevanter Abbau über 30 Tage (exp; pH 5, 7 und 9; 25°C; berechnete Halbwertszeit = 945 Tage)	ACP 1995
Photostabilität in Wasser	61.6% Verlust nach 30 Tagen (exp; steriles Wasser; natürliches Sonnenlicht; pH 5; 25°C; berechnete Halbwertszeit = 49 Tage)	US EPA 1995
	43% Verlust nach 24 Tagen (bei Sonnenlicht im Freien, Fargo, North Dakota)	Tanaka et al. 1986
	42% Verlust in destilliertem Wasser sowie 72% Verlust in Flusswasser nach 2 Monaten (natürliches Sonnenlicht)	ACP 1995

3 Allgemeines

Anwendung:

Linuron dient als selektives, systemisches Herbizid zur Bekämpfung von Unkraut beim Anbau von verschiedenen Nutzpflanzen^a. Das Herbizid ist am effektivsten, wenn es durch die Wurzeln aufgenommen wird (Crane *et al.* 2008). Es kann im Vor- und Nachauflauf zur Unkrautkontrolle angewendet werden (Tomlin 2009).

Wirkungsweise:

Linuron hemmt die Photosynthese durch die Blockierung des Elektronentransports im Photosystem II (Tomlin 2009). Dies geschieht durch Bindung an die aktive, Plastoquinone-bindende Stelle des D1-Proteins (Devine *et al.* 1993).

Analytik:

Bestimmungsgrenze in Wasser: 0.05 μ g/L (GC-MSD) und 0.01 μ g/L (LC/MS) (Kontiokari und Mattsoff 2011). Mittels mixed-mode SPE, gekoppelt mit LC-MS/MS, konnte ein LOD von 1 ng/L erreicht werden. (Zhang *et al.* 2014).

 $^{^{}a} \ Schweizerisches \ Pflanzenschutzmittelverzeichnis: \\ \underline{\text{http://www.blw.admin.ch/psm/wirkstoffe/index.html?lang=de}}$

Stabilität und

Abbauprodukte:

Der Abbau von Linuron durch Hydrolyse geschieht bei relevanten Umweltparametern (pH 5 - 9) nur sehr langsam mit Halbwertszeiten von über einem Jahr (ACP 1995; EC 2002).

Die Stabilität gegenüber Photolyse ist mässig mit Halbwertszeiten von ungefähr 24 – 49 Tagen, abhängig von der Bestrahlungsart und den Wasserinhaltsstoffen (ACP 1995; Tanaka *et al.* 1986; US EPA 1995). Es kann angenommen werden, dass die Photolysestabilität in natürlichen Gewässern durch vorhandene natürliche Beschleuniger zusätzlich sinkt (Crane *et al.* 2008).

Die Stabilität unter Testbedingungen, wie sie typischerweise in Einzelspeziesstudien vorliegen, kann nur mithilfe begleitender chemischer Analytik verifiziert werden. In einem statischen Mikrokosmosexperiment (indoor, ohne Sediment) über 21 Tage war Linuron stabil (Daam und Van Den Brink 2007). In einem weiteren statischen Mikrokosmosexperiment (indoor, mit Sediment) lag die Halbwertszeit für Linuron bei 11 (0.5 μ g/L) – 49 Tagen (150 μ g/L) (Van Den Brink *et al.* 1997).

Für alle Kurzzeitexpositionen (< 14 Tage) ohne Sediment sowie für alle Tests, in denen die Testlösungen regelmässig erneuert wurden, kann daher davon ausgegangen werden, dass die Testkonzentrationen stabil waren. Die analytische Validierung der Testkonzentrationen ist somit nicht als zwingendes Kriterium für die Validität einer akuten Studie anzusehen. Die Stabilität der Testsubstanz ist nur ein Einflussfaktor auf die tatsächliche Testkonzentration, wenn auch ein sehr wichtiger. Andere Einflussfaktoren sind die Löslichkeit der Testsubstanz im Testmedium und das korrekte Einwiegen der Testsubstanz. Während sich die Löslichkeit anhand der Wasserlöslichkeit und der eingesetzten Testkonzentrationen plausibilisieren lässt, kann es beim Einwiegen zu nichtsystematischen Unterschieden kommen, die anhand der Angaben im jeweiligen Testbericht nicht ersichtlich sind. Daher werden alle Werte, die auf nominalen Konzentrationen beruhen, gekennzeichnet. Bei deutlichen Unterschieden (Unterschied grösser als Faktor 10) zwischen Toxizitätswerten, die auf nominalen Konzentrationen beruhen, und analytisch validierten Werten, sollen daher die analytisch validierten bevorzugt werden.

Gemäss US EPA (2011) können aquatische Organismen folgenden Transformationsprodukten von Linuron ausgesetzt sein: 1-(3,4-dichlorophenyl)-3-methylurea (DCPMU), (1-)3,4-dichlorophenylurea (DCPU), 3,4-dichloroanilin (DCA) und 1-(3,4-dichlorophenyl)-1-methoxyurea (Desmethyl-Linuron). In Tabelle 2 - 4 werden Effektwerte zu aquatischen Organismen für DCPMU, DCPU und DCA angegeben. Für Desmethyl-Linuron wurden keine Effektdaten

gefunden. Ihre Toxizität wird in Abschnitt 10 mit Linuron verglichen und diskutiert.

Tabelle 2: Ökotoxizität von 1-(3,4-dichlorophenyl)-3-methylurea (DCPMU)

Organismus	Kurzzeittoxizität (EC50)	Referenz
Pseudokirchneriella	70 μg/L	Neuwöhner et al. 2010
subcapitata (Grünalge)	36.4 μg/L	EC 2001a
Scenedesmus vacuolatus (Grünalge)	15 μg/L	Neuwöhner <i>et al.</i> 2010
Periphyton (Photosynthese)	117 μg/L (24 h)	Tiam <i>et al.</i> 2015
Daphnia magna (Krebstier)	10'700 μg/L	Neuwöhner et al. 2010
Daprinia magna (Riebstier)	5'400 μg/L	EC 2001a
Oncorhynchus mykiss (Fisch)	4'200 μg/L	EC 2001a

Tabelle 3: Ökotoxizität von (1-)3,4-dichlorophenylurea (DCPU)

Organismus	Kurzzeittoxizität (EC50)	Referenz
Pseudokirchneriella subcapitata (Grünalge)	11'300 μg/L	Neuwöhner et al. 2010
Scenedesmus vacuolatus (Grünalge)	3'400 μg/L	Neuwöhner et al. 2010
Daphnia magna (Krebstier)	13'300 µg/L	Neuwöhner et al. 2010

Tabelle 4: Ökotoxizität von 3,4-dichloroanilin (DCA)

Organismus	Kurzzeittoxizität (EC50)	Referenz
Pseudokirchneriella subcapitata (Grünalge)	24'300 μg/L	Neuwöhner et al. 2010
Scenedesmus vacuolatus (Grünalge)	13'300 µg/L	Neuwöhner et al. 2010
Daphnia magna (Krebstier)	227 μg/L	Neuwöhner et al. 2010
Gobiocypris rarus (Fisch)	1'088 μg/L	Zhu <i>et al.</i> 2013

Existierende EQS:

Tabelle 5: Bereits existierende EQS.

Land	AA- EQS [µg/L]	MAC- EQS [µg/L]	Referenz
Deutschland	0.1	-	MELUR 2009
Finnland	0.1	0.7	Kontiokari und Mattsoff 2011
Frankreich	1	1	INERIS 2009 (rechtlich bindend seit 2015: http://www.ineris.fr)
Kanada	7.0	-	CCME 1999
Niederlande	0.25	-	Niederlande 2010
Niederlande	0.17	0.29	Niederlande veröffentlicht durch Ctgb
UK	0.5	0.9	UK TAG 2008
Schweden	0.07	-	Andersson und Kreuger 2011

4 Effektdatensammlung

Für Linuron und kommerzielle Formulierungen mit Linuron als (einzigem) Wirkstoff sind Effektdaten zu Protozoen, Bakterien, Algen, Wasserpflanzen, Krebstieren, Insekten, Mollusken, Fischen, Amphibien und Würmern vorhanden (Tabelle 6). Effektwerte aus Tests mit Formulierungen werden nicht für die EQS-Ableitung verwendet, da diesen weitere, unbekannte Stoffe beigemischt sind und deren Toxizität unklar ist. Resultate aus solchen Studien sollen aber als unterstützende Informationen dienen.

Tabelle 6: Effektdatensammlung für Linuron. Eine Bewertung der Validität wurde nach den Klimisch - Kriterien (Klimisch *et al.* 1997) durchgeführt, bzw. nach den CRED-Kriterien für Studien die im Zuge der Aktualisierung herangezogen wurden (Moermond *et al.* 2016). Literaturdaten, die in grau dargestellt sind, erfüllen nicht die Datenanforderungen nach dem TGD for EQS, sollen aber als zusätzliche Information genannt werden. Der Endpunkt Wachstumsrate wurde gemäss TGD for EQS dem Endpunkt Biomasse vorgezogen und Letztere grau dargestellt, falls für eine Art beide Endpunkte vorhanden sind. "≥-, >- und "≤"-Werte, auch wenn sie valide sind, können nicht direkt zur EQS-Ableitung verwendet werden und sind ebenfalls in grau dargestellt. **kA** = keine Angaben; **Form.** = Formulierung; >< = Effektwert liegt im angegebenen Wertebereich; **tech** = technische Reinheit.

				EFF	EKTDA	TEN	ISAMMLU	ING					
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Reinheit (%)/ Salinität (%)	Chemische Analyse	Testsystem	Notiz	Validität	Referenz
	Tests mit reinem Linuron												
	akute Daten limnisch												
Protozoa	Spirostomum ambiguum	Zelldeformation (Verkürzen oder Biegen)	48	h	EC50	=	44'000	kA	С	S	D	3	Nałęcz-Jawecki et al. 2002
Protozoa	Spirostomum ambiguum	Autolyse und letale Deformation der Zelle	48	h	EC50	=	75'200	kA	С	S	D	3	Nałęcz-Jawecki et al. 2002
Bakterien	Pseudomonas putida	Wachstum (Optische Dichte)	18	h	EC10	>	5'000	kA	kA	S		4	Trenel und Kühn 1982, zitiert in GSBL 2012
Cyanobakterien	Anabaena flos-aquae	Wachstum	120	h	EC50	=	38.8	98.4	kA	s	E	2	T. R. Wilbury Laboratories 1996, zitiert in OPP 2012 und US EPA 2008
Algen	Ankistrodesmus falcatus	Wachstum	10	d	EC50	=	49	kA	kA	S		4	Tscheu-Schlüter und Winter 1985
Algen	Chara globularis	Photosynthesehemmung (Quantum Yield)	24	h	EC50	=	12.1	kA	С	S		4	Snel et al. 1998
Algen	Chara globularis	Photosynthesehemmung (Quantum Yield)	24	h	EC10	=	1	kA	С	S		4	Snel et al. 1998
Algen	Chlorella vulgaris	Wachstumsrate (Zellzahl)	7	d	EC50	=	50	80	С	S	G	3	Stephenson und Kane 1984
Algen	Chlorella vulgaris	Photosynthesehemmung (Sauerstoffproduktion)	1 - 2	h	EC50	=	110	kA	С	S		4	Kratky und Warren 1971
Algen	Chlorella vulgaris	Chlorophyllgehalt (spektrophotometrisch)	18 - 36	h	EC50	=	130	kA	С	S		4	Kratky und Warren 1971
Algen	Chlorella sp.	Photosynthesehemmung (Sauerstoffproduktion)	24	h	EC50	=	960	tech	С	S	H, N	2	Knauf und Schulze 1972
Algen	Navicula pelliculosa	Wachstum	120	h	EC50	=	<u>13.7</u>	98.4	kA	s	E	2	T. R. Wilbury Laboratories 1996, zitiert US EPA 2008 und OPP 2012
Algen	Pseudokirchneriella subcapitata	Wachstum (Zellzahl)	120	h	EC50	=	<u>67</u>	100	kA	s	I	1	Douglas und Handley 1988, zitiert US EPA 1995 und OPP 2012

	EFFEKTDATENSAMMLUNG												
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Reinheit (%)/ Salinität (%)	Chemische Analyse	Testsystem	Notiz	Validität	Referenz
Algen	Pseudokirchneriella subcapitata	Wachstum (Optische Dichte)	120	h	EC50	=	43	kA	С	S		4	ACP 1995
Algen	Scenedesmus acutus	Wachstumsrate (Zellzahl)	72	h	EC50	=	6	kA	С	S		4	Snel et al. 1998
Algen	Scenedesmus acutus	Photosynthesehemmung (Quantum Yield)	72	h	EC50	=	17.3	kA	С	S		4	Snel et al. 1998
Algen	Scenedesmus subspicatus	Wachstumsrate (Zellzahl)	72	h	EC50	=	<u>16</u>	94.8	С	s		1	Fischer 1989a, zitiert in EC 1996
Algen	Scenedesmus vacuolatus	Reproduktion einer synchronisierten Kultur	24	h	EC50	=	21.8	> 95	В	s	к	2	Backhaus et al. 2004
Höhere Wasserpflanzen	Elodea nuttallii	Photosynthesehemmung (Quantum Yield)	24	h	EC50	=	9	kA	Α	S		4	Snel et al. 1998
Höhere Wasserpflanzen	Elodea nuttallii	Photosynthesehemmung (Quantum Yield)	24	h	EC10	=	0.9	kA	Α	S		4	Snel et al. 1998
Höhere Wasserpflanzen	Lemna gibba	Wachstum	14	d	EC50	=	27.3	97.6	В	S	E	2	Haskell Laboratory 1996, zitiert in US EPA 2008 und OPP 2012
Höhere Wasserpflanzen	Lemna gibba	Biomasse	7	d	EC50	=	21	95	В	R		1	Heusel und Weller, zitiert in EC 2001a
Höhere Wasserpflanzen	Lemna gibba	Wachstumsrate	7	d	EC50	=	<u>55</u>	95	В	R		1	Heusel und Weller, zitiert in EC 2001a
Höhere Wasserpflanzen	Lemna minor	Wachstumsrate (Frondzahl)	120	h	EC50	=	70	80	С	S	L	2	Stephenson und Kane 1984
Höhere Wasserpflanzen	Lemna minor	Membranpermeabilität	72	h	NOEC	=	250	tech	kA	kA		4	O'Brien und Prendeville 1979, zitiert in Caux et al. 1998
Höhere Wasserpflanzen	Lemna minor	Wachstumsrate (Frondzahl)	7	d	EC50	=	30.5	>99%	В	s		2	Gatidou et al. 2015
Höhere Wasserpflanzen	Lemna sp.	kA	24	h	EC50	=	450	tech	С	S		4	Knauf und Schulze 1972
Höhere Wasserpflanzen	Myriophyllum spicatum	Photosynthesehemmung (Quantum Yield)	24	h	EC50	=	11.8	kA	С	S		4	Snel et al. 1998
Höhere Wasserpflanzen	Myriophyllum spicatum	Photosynthesehemmung (Quantum Yield)	24	h	EC10	=	0.7	kA	С	S		4	Snel et al. 1998
Höhere Wasserpflanzen	Potamogeton crispus	Photosynthesehemmung (Quantum Yield)	24	h	EC50	=	12.9	kA	С	S		4	Snel et al. 1998
Höhere Wasserpflanzen	Potamogeton crispus	Photosynthesehemmung (Quantum Yield)	24	h	EC10	=	1	kA	С	S		4	Snel et al. 1998
Höhere Wasserpflanzen	Potamogeton pectinatus	Photosynthesehemmung (Sauerstoffproduktion)	3	h	EC50	=	0.07	tech	С	S		3	Fleming et al. 1995
Höhere Wasserpflanzen	Potamogeton pectinatus	Photosynthesehemmung (Sauerstoffproduktion)	3	h	NOEC	=	0.05	tech	С	S		3	Fleming et al. 1995
Höhere Wasserpflanzen	Ranunculus circinatus	Photosynthesehemmung (Quantum Yield)	24	h	EC50	=	13.2	kA	С	S		4	Snel et al. 1998
Höhere Wasserpflanzen	Ranunculus circinatus	Photosynthesehemmung (Quantum Yield)	24	h	EC10	=	1.7	kA	С	S		4	Snel et al. 1998
Höhere Wasserpflanzen	Rhiziella sp.	kA	24	h	EC50	=	1'800	kA	С	S		4	Knauf und Schulze 1972
Plattwürmer	Dugesia tigrina	Mortalität	24	h	LC50	=	10'000	kA	С	S	H, N	2	Knauf und Schulze 1972
Plattwürmer	Planaria gonocephala	Mortalität	24	h	LC50	=	10'000	kA	С	S	H, N	2	Knauf und Schulze 1972
Ringelwürmer	Aeolosoma variegatum	Mortalität	24	h	LC50	=	70'000	kA	С	S	H, N	2	Knauf und Schulze 1972
Ringelwürmer	Aeolosoma variegatum	Mortalität	24	h	LC0	=	50'000	kA	С	S	Н	2	Knauf und Schulze 1972
Ringelwürmer	Tubifex sp.	Mortalität	24	h	LC50	=	16'000	kA	С	S	H, N	2	Knauf und Schulze 1972

	EFFEKTDATENSAMMLUNG													
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Reinheit (%)/ Salinität (%)	Chemische Analyse	Testsystem	Notiz	Validität	Referenz	
Ringelwürmer	Tubifex sp.	Mortalität	24	h	LC0	=	10'000	kA	С	S	Н	2	Knauf und Schulze 1972	
Krebstiere	Daphnia magna (24 h)	Immobilisierung	96	h	EC50	=	7'000	kA	С	S		4	Hernando et al. 2003	
Krebstiere	Daphnia magna	Mortalität	48	h	LC50	=	<u>120</u>	94.4	С	s	I	1	Litchfield und Stahl Jr. 1985, zitiert in US EPA 1985a und US EPA 1995	
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	=	270	94.1	kA	s		2	Mayer und Ellersieck 1986	
Krebstiere	Daphnia magna	Immobilisierung	48	h	EC50	=	<u>750</u>	94.4	С	S		2	Knauf 1980a, zitiert in EC 1996	
					geom. Mittel	=	290							
Krebstiere	Daphnia magna (< 24)	kA	48	h	EC50	=	1'910	98.4	kA	S		4	Haskell Laboratoriy 1996, zitiert in USEPA 2008 und OPP 2012	
Krebstiere	Daphnia magna	Mortalität	24	h	LC50	=	310	99	kA	kA		2	Heusel 1997, zitiert in EC 2002	
Krebstiere	Daphnia magna (adult)	Immobilisierung	24	h	EC50	=	310	80	С	S		2	Stephenson und Kane 1984	
Krebstiere	Daphnia magna (< 24)	Immobilisierung	24	h	EC50	=	590	80	С	S		2	Stephenson und Kane 1984	
Krebstiere	Daphnia magna	Immobilisierung	24	h	EC50	=	3'280	94.4	С	S		2	Knauf 1980a, zitiert in EC 1996	
Krebstiere	Daphnia magna	Mortalität	24	h	LC50	=	4'000	kA	С	S	Н	2	Knauf und Schulze 1972	
Krebstiere	Daphnia magna	Brutgrösse	6	d	NOEC		100	kA	С	R		2	Kashian und Dodson 2002	
Krebstiere	Daphnia magna	Wachstumsrate	6	d	NOEC		100	kA	С	R		2	Kashian und Dodson 2002	
Krebstiere	Daphnia magna	Mortalität	6	d	NOEC		100	kA	С	R		2	Kashian und Dodson 2002	
Krebstiere	Daphnia magna	Mortalität	48	h	NOEC	=	100	94.4	С	S	M	2	Dupont E. I. Corporation 1985, zitiert in OPP 2012	
Krebstiere	Daphnia magna	Schwimmverhalten	48	h	NOEC	=	320	94.4	С	S		2	Knauf 1980a, zitiert in EC 1996	
Krebstiere	Daphnia magna	Phototaxis	48	h	NOEC	>	95	99.5	С	S		2	Martins et al. 2007a	
Krebstiere	Daphnia magna	kA	48	h	NOEC	=	1'580	98.4	kA	Ø		4	Haskell Laboratory 1996, zitiert in OPP 2012	
Krebstiere	Daphnia magna	Mortalität	24	h	LC0	=	1'000	kA	С	S	Н	2	Knauf und Schulze 1972	
Krebstiere	Daphnia magna	Sauerstoffverbrauch	3.5	h	NOEC	٧	3,000	99.5	С	S		2	Martins et al. 2007b	
Krebstiere	Daphnia sp.	Immobilisierung	24	h	EC50	=	360	80	С	s		2	Stephenson und Kane 1984	
Krebstiere	Diaptomus gracilis	Immobilisierung	24	h	EC50	=	330	80	С	S	N	2	Stephenson und Kane 1984	
Insekten	Chironomus plumosus (3. Instar)	kA	48	h	EC50	=	<u>2'900</u>	95.1	С	s		2	Mayer und Ellersieck 1986	
Insekten	Aedes aegypti (Larve)	Mortalität	24	h	LC50	=	85'000	kA	С	S	H, N	2	Knauf und Schulze 1972	
Insekten	Aedes aegypti (Larve)	Mortalität	24	h	LC0	=	26'000	kA	С	S	Н	2	Knauf und Schulze 1972	
Insekten	Chironomus thummi (Larve)	Mortalität	24	h	LC50	>	10'000	kA	С	S	H, N	2	Knauf und Schulze 1972	

				EFF	EKTDA	TEN	ISAMMLU	NG					
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Reinheit (%)/ Salinität (‰)	Chemische Analyse	Testsystem	Notiz	Validität	Referenz
Insekten	Lasiocephala basalis (Larve)	Mortalität	24	h	LC50	>	10'000	kA	С	S	Н	2	Knauf und Schulze 1972
Mollusken	Lymnaea stagnalis	Mortalität	24	h	LC50	=	70'000	kA	С	S	H, N	2	Knauf und Schulze 1972
Mollusken	Lymnaea stagnalis	Mortalität	24	h	LC0	=	50'000	kA	С	S	Н	2	Knauf und Schulze 1972
Fische	Ameiurus (Ictalurus) nebulosus (juvenil)	Mortalität	96	h	LC50	=	5'200	95.1	kA	S		4	Autor unbekannt, zitiert in Crommentuijn et al. 1997
Fische	Carassius auratus	Mortalität	24	h	LC50	=	15'000	tech	С	S	H, N	2	Knauf und Schulze 1972
Fische	Carassius auratus	Mortalität	24	h	LC0	=	10'000	tech	С	S	Н	2	Knauf und Schulze 1972
Fische	Cyprinus carpio	Mortalität	48	h	LC50	=	7'000	kA	kA	kA		4	WSSA 1989, zitiert in Caux et al. 1998
Fische	Cyprinus carpio	Mortalität	24	h	LC50	><	20'000; 30'000	tech	С	S	H, N	2	Knauf und Schulze 1972
Fische	Cyprinus carpio	Mortalität	24	h	LC0	=	10'000	tech	С	S	Н	2	Knauf und Schulze 1972
Fische	lctalurus nebulosus (juvenil)	Mortalität	96	h	LC50	=	4'900 - 6'500	tech	С	S		2	Knauf 1980c, zitiert in EC 1996
Fische	lctalurus nebulosus (juvenil)	Mortalität	96	h	NOEC	=	2'400	tech	С	S		2	Knauf 1980c, zitiert in EC 1996
Fische	lctalurus punctatus (juvenil)	Mortalität	96	h	LC50	=	2'900	95.1	kA	s		2	Mayer und Ellersieck 1986
Fische	Lepomis macrochirus (juvenil)	Mortalität	96	h	LC50	=	9'600	96.2	kA	s	I	1	Wetzel 1986a, zitiert in US EPA 1995 und OPP 2012
Fische	Lepomis macrochirus (juvenil)	Mortalität	96	h	LC50	=	5'110	95.8	С	S		3	Hall 1985, zitiert in US EPA 1985c
Fische	Lepomis macrochirus (juvenil)	Mortalität	96	h	NOEC	=	4'900	96.2	kA	S	М	2	Wetzel 1986a, zitiert in OPP 2012
Fische	Leuciscus idus (Idus melanotus)	Mortalität	24	h	LC50	=	12'000	tech	С	S	H, N	2	Knauf und Schulze 1972
Fische	Leuciscus idus (Idus melanotus)	Mortalität	24	h	LC0	=	8'500	tech	С	S	Н	2	Knauf und Schulze 1972
Fische	Oncorhynchus kisutch (juvenil)	Olfaktorische Wahrnehmung	30	min	NOEC	٧	10	99	С	S		2	Tierney et al. 2007
Fische	Oncorhynchus mykiss (juvenil)	Mortalität	96	h	LC50	=	<u>3'000</u>	96.2	kA	s	I	1	Wetzel 1986b, zitiert in US EPA 1995
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	=	<u>3'150</u>	tech	С	s		2	Knauf 1980b, zitiert in EC 1996
Fische	Oncorhynchus mykiss	Mortalität	96	h	LC50	=	<u>3'150</u>	99	kA	kA		2	Heusel 1997, zitiert in EC 2002
					geom. Mittel		3'100						
Fische	Oncorhynchus mykiss (juvenil)	Mortalität	96	h	LC50	=	1'000	94.8	С	S		3	Hall 1985, zitiert in US EPA 1985b
Fische	Oncorhynchus mykiss (juvenil)	Mortalität	96	h	LC50	=	3'200	kA	kA	S		4	Autor unbekannt, zitiert in Crommentuijn et al. 1997
Fische	Oncorhynchus mykiss (juvenil)	Mortalität	96	h	LC50	=	3'300	96.2	Α	S		4	Autor unbekannt, zitiert in ACP 1995
	y,				1							_	V 6 10 1 1 10T0
Fische	Oncorhynchus mykiss	Mortalität	24	h	LC50	><	5'000; 10'000	tech	С	S	Н	2	Knauf und Schulze 1972

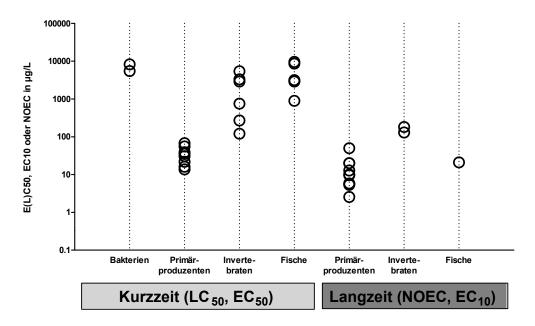
				EFF	EKTDA	TEN	ISAMMLU	JNG					
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (μg/L)	Reinheit (%)/ Salinität (‰)	Chemische Analyse	Testsystem	Notiz	Validität	Referenz
Fische	Oncorhynchus mykiss (juvenil)	Mortalität	96	h	NOEC	=	2'000	96.2	kA	S	М	2	Wetzel 1986b, zitiert in OPP 2012
Fische	Oncorhynchus mykiss (juvenil)	Mortalität	96	h	NOEC	=	2'100	96.2	Α	S		4	Autor unbekannt, zitiert in ACP 1995
Fische	Oncorhynchus mykiss (juvenil)	Abnormale Verhaltensweisen	96	h	NOEC	=	1'200	96.2	Α	S		4	Autor unbekannt, zitiert in ACP 1995
Fische	Oncorhynchus mykiss	Mortalität	24	h	NOEC	=	5'000	tech	С	S	Н	2	Knauf und Schulze 1972
Fische	Oncorhynchus mykiss (juvenil)	Olfaktorische Wahrnehmung	30	min	NOEC	<	10	99	С	S		2	Tierney et al. 2007
Fische	Oncorhynchus nerka (juvenil)	Olfaktorische Wahrnehmung	30	min	EC50	=	13	99	С	S		2	Tierney et al. 2007
Fische	Oncorhynchus nerka (juvenil)	Olfaktorische Wahrnehmung	30	min	NOEC	><	1; 10	99	С	S		2	Tierney et al. 2007
Fische	Poecilia reticulata	Mortalität	96	h	LC50	=	<u>8'600</u>	tech	С	s	н	2	Tscheu-Schlüter und Winter 1985
Fische	Poecilia reticulata (Lebistes reticulata)	Mortalität	24	h	LC50	=	8'000	tech	С	S	Н	2	Knauf und Schulze 1972
Fische	Poecilia reticulata	Mortalität	96	h	LOEC	=	2'500	tech	С	S	Н	2	Tscheu-Schlüter und Winter 1985
Fische	Poecilia reticulata	Mortalität	24	h	NOEC	≥	6'000	kA	kA	kA		4	GSBL 2012
Fische	Poecilia reticulata (Lebistes reticulata)	Mortalität	24	h	LC0	=	6,000	tech	С	S	Н	2	Knauf und Schulze 1972
Fische	Xiphophorus helleri	Mortalität	24	h	LC50	=	4'600	tech	С	S	H, N	2	Knauf und Schulze 1972
Fische	Xiphophorus helleri	Mortalität	24	h	LC0	=	1'500	tech	С	S	Н	2	Knauf und Schulze 1972
Fische	Danio rerio												Schiller et al. 2013
					akute	Date	n marin	•					
Bakterien	Aliivibrio fischeri	Lumineszenz	30	min	EC50	=	<u>5'500</u>	kA	С	s		2	Hernando et al. 2003
Bakterien	Aliivibrio fischeri	Lumineszenz	30	min	EC50	=	<u>8'200</u>	>99%	В	s		2	Gatidou et al. 2015
		geom. Mittel	30	min	EC50	=	6'716						
Bakterien	Bacillus stearothermophilus	Wachstum	1	h	IC50	=	18'433	>99%	С	S	W	2	Santos et al. 2014
Algen	Skeletonema costatum	Wachstum	120	h	EC50	=	35.2	98.4/kA	kA	s	E	2	T. R. Wilbury Laboratories 1996, zitiert in US EPA
Krebstiere	Americamysis bahia	Mortalität	96	h	LC50	=	3'400	kA	kA	kA		4	Tomlin 2009
Krebstiere	Americamysis bahia	Mortalität	48	h	LC50	=	3'300	98.4/kA	kA	s	ı	1	Ward und Boeri 1991a, zitiert in US EPA 1995 und OPP 2012
Krebstiere	Americamysis bahia	kA	akut	-	EC50	=	5'400	98.4/kA	kA	kA		4	Autor unbekannt, zitiert in US EPA 2004
Krebstiere	Americamysis bahia	Mortalität	96	h	NOEC	=	2'100	kA	kA	kA		4	Tomlin 2009
Krebstiere	Americamysis bahia	Mortalität	48	h	NOEC	=	1'200	98.4/kA	kA	S	M	2	Envirosystem & Engineering Inc. 1991, zitiert in OPP 2012
Fische	Cyprinodon variegatus	Mortalität	96	h	LC50	=	890	98.4/kA	kA	s	ı	1	Ward und Boeri 1991b, zitiert in US EPA 1995 und OPP 2012

				EFF	EKTDA	TEN	ISAMMLU	ING					
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Reinheit (%)/ Salinität (%)	Chemische Analyse	Testsystem	Notiz	Validität	Referenz
Fische	Cyprinodon variegatus	Mortalität	96	h	NOEC	=	490	98.4/kA	kA	s	M	2	Ward und Boeri 1991b, zitiert in OPP 2012
Mollusken	Crassostrea virginica	Schalenwachstum	96	h	EC50	=	<u>5'400</u>	98.4/kA	kA	s	I	1	Ward und Boeri 1991c, zitiert in US EPA 1995 und OPP 2012
Mollusken	Crassostrea virginica	kA	96	h	LC50	=	890	98.4/kA	kA	kA		4	Autor unbekannt, zitiert in US EPA 2004
Mollusken	Crassostrea virginica	kA	96	h	NOEC	=	3'600	98.4/kA	kA	s	M	2	Envirosystem & Engineering Inc. 1991, zitiert in OPP 2012
			chr	onische	und sub	chro	nische Date	n limnis	ch				
Protozoa	Acanthamoeba castellanii	Wachstum (Zellzahl)	6	d	NOEC	<	10'000	«pur»	С	S		2	Prescott et al. 1977
Cyanobakterien	Anabaena azollae	Stickstoffixierung	10	d	NOEC	<	100	tech	С	S		2	Holst et al. 1982
Cyanobakterien	Anabaena flos-aquae	Wachstum	120	h	NOEC	=	12.8	98.4	kA	s	М	2	T.R. Wilbury Laboratories 1996, zitiert in OPP 2012
Cyanobakterien	Nostoc muscorum	Chlorophyllgehalt (spektrometrisch)	7	d	NOEC	<	45	98	С	S		3	Abou-Waly und Shabana 1993
Algen	Ankistrodesmus falcatus	kA	10	d	LOEC	=	34	kA	kA	S		4	Tscheu-Schlüter und Winter 1985
Algen	Chlorella sp.	Photosynthesehemmung (Sauerstoffproduktion)	96	h	NOEC	=	10	tech	С	S	Н	2	Knauf und Schulze 1972
Algen	Chlorella sp	Wachstum (Zellzahl)	96	h	NOEC	=	<u>50</u>	tech	С	s	н	2	Knauf und Schulze 1972
Algen	Chlorella vulgaris	Biomasse (Optische Dichte)	21	d	NOEC	><	12; 84	97	Α	S		3	Slijkerman et al. 2005
Algen	Coccomyxa subellipsoidea	Wachstum	30	d	EC50	><	2'000; 5'000	analyt.	kA	kA		4	Cullimore 1975, zitiert in Caux et al. 1998
Algen	Desmodesmus subspicatus	Wachstum (Optische Dichte)	7	d	EC03	=	36	kA	kA	S		4	Trenel und Kühn 1982, zitiert in GSBL 2012
Algen	Haematococcus lacustris	Wachstum	30	d	EC50	><	2'000; 5'000	analyt.	kA	kA		4	Cullimore 1975, zitiert in Caux et al. 1998
Algen	Hormidium flaccidum	Wachstumsrate	30	d	EC50	=	5'000	analyt.	kA	kA		4	Cullimore 1975, zitiert in Caux et al. 1998
Algen	Hormidium stoechidium	Wachstumsrate	30	d	EC50	><	1'000; 5'000	analyt.	kA	kA		4	Cullimore 1975, zitiert in Caux et al. 1998
Algen	Mesotaenium caldariorum	Wachstumsrate	30	d	EC50	><	5'000; 10'000	analyt.	kA	kA		4	Cullimore 1975, zitiert in Caux et al. 1998
Algen	Navicula pelliculosa	Wachstum	120	h	NOEC	=	<u>5.79</u>	98.4	kA	s	М	2	T.R. Wilbury Laboratories 1996, zitiert in OPP 2012
Algen	Pseudokirchneriella subcapitata	Wachstum (Zellzahl)	120	h	NOEC	=	<u>20</u>	100	kA	s	М	2	Huntington Research Center 1988, zitiert in OPP 2012
Algen	Scenedesmus acutus	Wachstumsrate (Zellzahl)	72	h	EC10	=	1.2	kA	kA	S		4	Snel et al. 1998
Algen	Scenedesmus acutus	Photosynthesehemmung	72	h	EC10	=	2.5	kA	kA	S		4	Snel et al. 1998
Algen	Scenedesmus subspicatus	Wachstumsrate (Zellzahl)	72	h	NOEC	=	<u>5.6</u>	94.8	С	s		1	Fischer 1989a, zitiert in EC 1996
Algen	Scenedesmus vacuolatus	Reproduktion einer synchronisierten Kultur	24	h	EC10	=	2.55	< 95%	В	s	к	2	Backhaus et al. 2004
Algen	Scenedesmus vacuolatus	Reproduktion einer synchronisierten Kultur	24	h	NOEC	=	0.33	> 95%	В	S	K	2	Backhaus et al. 2004
Algen	Spongiochloris excentrica	kA	30	d	EC50	=	2'000	analyt.	kA	kA		4	Cullimore 1975, zitiert in Caux et al. 1998
Algen	Stichococcus bacillaris	kA	30	d	EC50	><	2'000; 5'000	analyt.	kA	kA		4	Cullimore 1975, zitiert in Caux et al. 1998

	EFFEKTDATENSAMMLUNG												
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Reinheit (%)/ Salinität (%)	Chemische Analyse	Testsystem	Notiz	Validität	Referenz
Höhere Wasserpflanzen	Lemna gibba	Wachstum	14	d	NOEC	=	9.65	97.6	kA	s	М	2	Haskell Laboratory 1996, zitiert in OPP 2012
Höhere Wasserpflanzen	Lemna gibba	Wachstum	7	d	NOEC	=	<u>10</u>	95	В	R		1	Heusel und Weller 1998, zitiert in EC 2001a
Höhere Wasserpflanzen	Lemna gibba	kA	kA	-	NOEC	=	1	97.6	kA	kA		4	US EPA 2008
Höhere Wasserpflanzen	Lemna minor	Wachstumsrate (Frondfläche)	7	d	NOEC	=	20	99	С	s		2	Hulsen et al. 2002
Gürtelwürmer	Tubifex sp.	Gewicht	28	d	NOEC	>	1'000	tech	С	F		2	Knauf und Schulze 1972
Krebstiere	Daphnia magna (< 24 h)	Immobilisierung	21	d	NOEC	=	<u>130</u>	98.4	Α	R	E	1	Baer 1991, zitiert in US EPA 1992 und US EPA 2008
Krebstiere	Daphnia magna (< 24 h)	Mortalität	21	d	NOEC	=	<u>180</u>	94.8	В	R		1	Fischer 1987, zitiert in EC 1996
					geom. Mittel	=	153						
Krebstiere	Daphnia magna (< 24 h)	Reproduktion	21	d	NOEC	≥	320	94.8	В	R		1	Fischer 1987, zitiert in EC 1996
Krebstiere	Daphnia magna	kA	21	d	NOEC	=	180	99	kA	kA		2	Heusel 1997, zitiert in EC 2002
Krebstiere	Daphnia magna (< 24 h)	Immobilisierung	21	d	EC50	=	210	98.4	Α	R		1	Baer 1991, zitiert in US EPA 1992
Mollusken	Lymnaea stagnalis	Gewicht	28	d	NOEC	≥	1'000	tech	С	F		2	Knauf und Schulze 1972
Mollusken	Lymnaea stagnalis	Reproduktion (Anzahl Laichschnüre)	28	d	NOEC	><	100; 1'000	tech	С	F		2	Knauf und Schulze 1972
Mollusken	Lymnaea stagnalis	Reproduktion (Schlupfrate)	28	d	NOEC	≥	1'000	tech	С	F		2	Knauf und Schulze 1972
Fische	Cyprinus carpio	Verhalten (keine genaueren Angaben)	28	d	NOEC	≥	100	tech	С	F		2	Knauf und Schulze 1972
Fische	Gasterosteus aculeatus (adult, weiblich)	Anti-androgener Effekt (Spigginproduktion)	21	d	NOEC	=	7.6	> 99	С	F		2	Jolly et al. 2009
Fische	Gasterosteus aculeatus (juvenil)	Anti-androgener Effekt (Spigginproduktion)	21	d	NOEC	><	6.9 - 106	kA	Α	R		2	Katsiadaki et al. 2006
Fische	Gasterosteus aculeatus (adult, weiblich)	Androgener Effekt (Spigginproduktion)	21	d	NOEC	>	193	> 99	С	F		2	Jolly et al. 2009
Fische	Oncorhynchus mykiss (ELS Test)	Länge	80	d	NOEC= LOEC/2	=	<u>21</u>	98.4	Α	F	v	1	Pierson 1991, zitiert in US EPA 1993
Fische	Oncorhynchus mykiss (juvenil)	Cytopathologie	35	d	NOEC	<	30	> 99	В	F		2	Oulmi et al. 1995
Fische	Oncorhynchus mykiss	Hematologie	28	d	LOEC	=	30	kA	С	F		4	Brüggemann et al. 1995
Fische	Oncorhynchus mykiss	Histopathologie	28	d	LOEC	=	60	kA	С	F		4	Brüggemann et al. 1995
Fische	Oncorhynchus mykiss	Mortalität	21	d	NOEC	=	100	99	kA	kA	N	2	Heusel 1997, zitiert in EC 2002
Fische	Oncorhynchus mykiss (juvenil)	Schwimmverhalten, red. Nahrungsaufnahme	21	d	NOEC	=	120	94.8	Α	S	N	1	Fischer 1989b, zitiert in EC 1996
	,		ch	ronisc	he und su	ıbchr	onische Dat	en mar	in				
Algen	Skeletonema costatum	Wachstum	120	h	NOEC	=	<u>5.35</u>	98.4	kA	s	М	2	T.R. Wilbury Laboratories 1996, zitiert in OPP 2012
Krebstiere	Americamysis bahia	Länge	28	d	NOEC	<	297	98.4/16	Α	F		1	Boeri et al. 1996, zitiert in US EPA 1996

				FFF	FKTDA	TFN	ISAMMLU	NG					
	l I										I		
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Reinheit (%)/ Salinität (%)	Chemische Analyse	Testsystem	Notiz	Validität	Referenz
Fische	Cyprinodon variegatus (ELS test)	Länge	36	d	NOEC	=	357	97.6/16	Α	F		3	Boeri et al. 1996, zitiert in US EPA 1999
Fische	Cyprinodon variegatus (ELS test)	Gewicht	36	d	NOEC	=	357	97.6/16	Α	F		3	Boeri et al. 1996, zitiert in US EPA 1999
Mikrokosmosstudien limnisch													
Phytoplankton	div.	Abundanz	21	d	NOEC	=	42.6	kA	Α	s		2	Daam und Van Den Brink 2007
Zooplankton	div.	Abundanz	21	d	NOEC	><	4.7; 42.6	kA	Α	S		2	Daam und Van Den Brink 2007
biotische Gemeinschaft	div.	Chlorophyll a	21	d	NOEC	><	4.7; 42.6	kA	Α	S		2	Daam und Van Den Brink 2007
				N	/likrokosr	noss	tudien marir						
Höhere Wasserpflanzen	Myriophyllum spicatum	Trockengewicht	28	d	NOEC	><	100; 500	tech/9	С	S		3	Kemp et al. 1985
Höhere Wasserpflanzen	Potamogeton perfoliatus	Trockengewicht	28	d	NOEC	><	5; 50	tech/9	С	S		3	Kemp et al. 1985
biotische Gemeinschaft	Makrophyten und Plankton	Photosyntheseaktivität	28	d	NOEC	><	5; 50	tech/9	С	S		3	Kemp et al. 1985
	Mesokosmosstudien limnisch												
Insekten	div.	Abundanz	42	d	NOEC	<	581	80	Α	S	0	2	Stephenson und Kane 1984
				Tests	mit Form	ulier	ungen (in µg	ai/L)					
					akute [Daten	limnisch						
Cyanobakterien	Chroococcus sp.	Chlorophyll a Gehalt	9	d	EC50	=	467	Form.	С	S	Р	3	Aslim und Ozturk 2009
Cyanobakterien	Chroococcus sp.	Chlorophyll a Gehalt	9	d	EC50	=	136	Form.	С	S	Р	3	Aslim und Ozturk 2009
Cyanobakterien	Chroococcus sp.	Chlorophyll a Gehalt	9	d	EC50	=	613	Form.	С	S	Р	3	Aslim und Ozturk 2009
Cyanobakterien	Microcystis sp.	Chlorophyll a Gehalt	9	d	EC50	=	196	Form.	С	S	Р	3	Aslim und Ozturk 2009
Cyanobakterien	Microcystis sp.	Chlorophyll a Gehalt	9	d	EC50	=	573	Form.	С	S	Р	3	Aslim und Ozturk 2009
Cyanobakterien	Microcystis sp.	Chlorophyll a Gehalt	9	d	EC50	=	693	Form.	С	S	Р	3	Aslim und Ozturk 2009
Cyanobakterien	Synechococcus sp.	Chlorophyll a Gehalt	9	d	EC50	=	205	Form.	С	S	Р	3	Aslim und Ozturk 2009
Cyanobakterien	Synechococcus sp.	Chlorophyll a Gehalt	9	d	EC50	=	368	Form.	С	S	Р	3	Aslim und Ozturk 2009
Cyanobakterien	Synechosystis sp.	Chlorophyll a Gehalt	9	d	EC50	=	882	Form.	С	S	Р	3	Aslim und Ozturk 2009
Cyanobakterien	Synechosystis sp.	Chlorophyll a Gehalt	9	d	EC50	=	169	Form.	С	S	Р	3	Aslim und Ozturk 2009
Algen	Chlamydomonas meowusii	Wachstum (Optische Dichte)	7	d	EC50	=	648	Form.	kA	S	Q	3	Cain und Cain 1983
Phytoplankton	div.	Photosyntheseaktivität	4	h	EC50	<	25	Form.	С	S	Q	2	Girman 1975
Höhere Wasserpflanzen	Myriophyllum spicatum	Wachstum	120	h	NOEC	≥	100'000	Form.	С	S	Q	3	Christopher und Bird 1992
Höhere Wasserpflanzen	Myriophyllum spicatum	Sprosswachstum	21	d	EC10	=	19			S	Х	2	Burešová et al. 2013

				EFF	EKTDA	TEN	ISAMMLU	ING					
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Reinheit (%)/ Salinität (%)	Chemische Analyse	Testsystem	Notiz	Validität	Referenz
Höhere Wasserpflanzen	Myriophyllum spicatum	Sprosswachstum	21	d	EC10	=	947			S	J, X	2	Burešová et al. 2013
Höhere Wasserpflanzen	Myriophyllum spicatum	Wachstum (Nassgewicht)	21	d	EC10	=	21			S	Х	2	Burešová et al. 2013
Höhere Wasserpflanzen	Myriophyllum spicatum	Wachstum (Nassgewicht)	21	d	EC10	=	1036			S	J, X	2	Burešová et al. 2013
Fische	Oreochromis mossambicus (juvenil)	Mortalität	48	h	LC50	=	6426	Form.	С	S	Q	3	Shafiei und Costa 1990
			chr	onische	und sub	chro	nische Date	n limnis	ch				
Algen	Chlamydomonas meowusii	Wachstum (Optische Dichte)	7	d	NOEC	=	249	Form.	kA	S	Q	3	Cain und Cain 1983
Algen	Chlorella vulgaris	Wachstum (fluorometrisch)	96	h	NOEC	><	10; 100	Form.	С	S	Т	2	Garten Jr 1990
Algen	Pseudokirchneriella subcapitata	Wachstum (fluorometrisch)	96	h	NOEC	><	10; 100	Form.	С	S	Т	2	Garten Jr 1990
Höhere Wasserpflanzen	Elodea nuttallii	Trockengewicht	21	d	NOEC	><	0.46; 4.93	Form.	Α	R	U	2	Cuppen et al. 1997; Van Den Brink et al. 1997
Höhere Wasserpflanzen	Elodea nuttallii	Trockengewicht	21	d	EC50	=	2.5	Form.	Α	R	U	2	Cuppen et al. 1997; Van Den Brink et al. 1997
Höhere Wasserpflanzen	Myriophyllum spicatum	Trockengewicht	28	d	NOEC	=	15	Form.	С	S	U	3	Van Geest et al. 1999
				Mi	krokosm	osstu	dien limnis	ch					
Cyanobakterien	Phormidium foveolarum	Abundanz	28	d	NOEC	=	50.7	Form.	Α	R	U	2	Cuppen et al. 1997; Van Den Brink et al. 1997
Algen	Chroomonas sp.	Abundanz	28	d	NOEC	><	0.46; 4.93	Form.	Α	R	U	2	Cuppen et al. 1997; Van Den Brink et al. 1997
Algen	Cocconeis sp.	Abundanz	28	d	NOEC	><	0.46; 4.93	Form.	Α	R	U	2	Cuppen et al. 1997; Van Den Brink et al. 1997
Phytoplankton	div.	Abundanz	56	d	NOEC	=	15	Form.	С	S	U	3	Daam et al. 2009
Höhere Wasserpflanzen	Ceratophyllum demersum	Photosynthesehemmung (Quantum Yield)	35	d	EC10	=	1.0	Form.	С	R	U	2	Snel et al. 1998
Höhere Wasserpflanzen	Ceratophyllum demersum	Photosynthesehemmung (Quantum Yield)	35	d	EC50	=	8.7	Form.	С	R	U	2	Snel et al. 1998
Höhere Wasserpflanzen	Elodea nuttallii	Photosynthesehemmung (Quantum Yield)	28	d	EC10	=	1.5	Form.	С	R	U	2	Snel et al. 1998
Höhere Wasserpflanzen	Elodea nuttallii	Trockengewicht	21	d	EC50	=	2.5	Form.	С	R	U	2	Snel et al. 1998
Höhere Wasserpflanzen	Elodea nuttallii	Trockengewicht	21	d	NOEC	><	0.5; 5	Form.	С	R	U	2	Snel et al. 1998
Höhere Wasserpflanzen	Elodea nuttallii	Photosynthesehemmung (Quantum Yield)	28	d	EC50	=	8.4	Form.	С	R	U	2	Snel et al. 1998
Höhere Wasserpflanzen	Spirogya sp.	Photosynthesehemmung (Quantum Yield)	35	d	EC10	=	11.1	Form.	С	R	U	2	Snel et al. 1998
Höhere Wasserpflanzen	Spirogya sp.	Photosynthesehemmung (Quantum Yield)	35	d	EC50	=	25.1	Form.	С	R	U	2	Snel et al. 1998
Plattwürmer	Dugesia	Abundanz	28	d	NOEC	2	154	Form.	Α	R	U	2	Cuppen et al. 1997; Van Den Brink et al. 1997
Krebstiere	Cladocera	Abundanz	28	d	NOEC	≥	154	Form.	Α	R	U	2	Cuppen et al. 1997; Van Den Brink et al. 1997
Krebstiere	Copepoda	Abundanz	28	d	NOEC	2	154	Form.	Α	R	U	2	Cuppen et al. 1997; Van Den Brink et al. 1997
Krebstiere	Cladocera	Abundanz	28	d	NOEC	≥	154	Form.	Α	R	U	2	Cuppen et al. 1997; Van Den Brink et al. 1997


	EFFEKTDATENSAMMLUNG												
Sammel- bezeichnung	Organismus (Lebensstadium bei Testbeginn)	Endpunkt	Dauer	Dimension	Parameter	Operator	Wert (µg/L)	Reinheit (%)/ Salinität (%)	Chemische Analyse	Testsystem	Notiz	Validität	Referenz
Krebstiere	Asellus aquaticus	Abundanz	28	d	NOEC	≥	154	Form.	Α	R	U	2	Cuppen et al. 1997; Van Den Brink et al. 1997
Rotifera	div.	Abundanz	28	d	NOEC	=	4.9	Form.	Α	R	U	2	Cuppen et al. 1997; Van Den Brink et al. 1997
Zooplankton	div.	Abundanz	56	d	NOEC	=	50	Form.	С	S	U	3	Daam et al. 2009
Mollusken	Physella acuta	Abundanz	28	d	NOEC	=	50.7	Form.	Α	R	U	2	Cuppen et al. 1997; Van Den Brink et al. 1997
Mollusken	Bithynia	Abundanz	28	d	NOEC	≥	154	Form.	Α	R	U	2	Cuppen et al. 1997; Van Den Brink et al. 1997
				Me	esokosmo	osstu	dien limnisc	h					
Algen	Chlamydomonas sp.	Abundanz	60	d	NOEC	=	5	Form.	С	S	U	3	Van Geest et al. 1999
Phytoplankton	div.	Abundanz	60	d	NOEC	≥	50	Form.	С	S	U	3	Van Geest et al. 1999
Phytoplankton	div.	Chlorophyll a	60	d	NOEC	≥	50	Form.	С	S	U	3	Van Geest et al. 1999
Periphyton	div.	Abundanz	60	d	NOEC	≥	50	Form.	С	S	U	3	Van Geest et al. 1999
Periphyton	div.	Chlorophyll a	60	d	NOEC	≥	50	Form.	С	S	U	3	Van Geest et al. 1999
Makrophyten	div.	Trockengewicht	60	d	NOEC	≥	50	Form.	С	S	U	3	Van Geest et al. 1999
Zooplankton	div.	Abundanz	60	d	NOEC	=	5	Form.	С	S	U	3	Van Geest et al. 1999
biotische Gemeinschaft	div.	Photosyntheseaktivität	60	d	NOEC	=	5	Form.	С	S	U	3	Van Geest et al. 1999
biotische Gemeinschaft	div.	Photosyntheseaktivität	60	d	NOEC	=	9	Form.	С	S	U	3	Van Geest et al. 1999

Notizen

- A Gemessene Testkonzentrationen für Effektbestimmung verwendet
- B Nominale Testkonzentrationen für Effektbestimmung verwendet, gemessene Wiederfindung ± 20 % der Nominalen
- C Nominale Testkonzentrationen für Effektbestimmung verwendet (keine chemische Analyse durchgeführt)
- D Lösungsmittel verwendet (Aceton) mit Anteilen von bis zu 1 vol%.
- E Effektwert wurde von der US EPA zur Risikobewertungen verwendet und gemäss OPP Pesticide Ecotoxicity Database (OPP 2012) in der Qualitätskategorie C = "core" eingestuft.
- F Durchfluss
- G Testdauer deutliche länger als in OECD 201 vorgeschlagen und keine Angaben darüber, ob die Validitätskriterien (stabile Wachstumsraten) erfüllt wurden.
- H Studie von EC 1996 als valide eingestuft
- I Effektwert wurde von der US EPA in der Registrierung des Herbizides verwendet (US EPA 1995).
- J Bezogen auf Konzentration im Porenwasser (Sediment)
- Tests mit synchronisierten Algenkulturen über 24 Stunden haben eine vergleichbare Empfindlichkeit wie standardisierte Tests (Faust et al. 2001). EC10 aus Regressionsparametern berechnet.
- L Testdauer nur 5 Tage (mindestens 7 Tage gemäss OECD 221). Effektwert beträgt 70 statt 7 μg/L (Crane et al. 2008).
- M Studie wurde gemäss OPP Pesticide Ecotoxicity Database (OPP 2012) durch die US EPA in der Qualitätskategorie C = "core" eingestuft.
- N Relevanz des Endpunktes oder der Expositionsdauer unklar.
- O TWMC berechnet, da Testkonzentration nicht konstant gehalten wurde.
- P Die Cyanobakterien stammen aus unterschiedlichen Regionen. Deshalb wird für jeden Stamm ein Effektwert angegeben. Die Tests wurden vermutlich mit einer Formulierung durchgeführt.
- Q Test mit Formulierung: Lorox (50% Linuron)
- R Semi-statisch
- S Statisch
- Test mit Formulierung: Name unbekannt (41.8% Linuron)
- U Test mit Formulierung: Afalon (47.5% Linuron)
- NOEC gemäss TGD for EQS aus LOEC berechnet (NOEC = LOEC/2). Dies ist gemäss TGD for EQS möglich, wenn der LOEC die tiefste gemessene Testkonzentration ist und der Effekt zwischen 10 und 20% liegt.
- W Studie erfüllt Datenanforderungen nicht; basierend auf CRED-Kriterien als nicht Relevant eingestuft
- X Endpunkt als nicht Belastbar eingestuft, da kein Konzentrationsgleichgewicht zwischen Porenwasser und dem über dem Sediment befindlichen Wasser.

5 Grafische Darstellung der Effektdaten

In Abbildung 1 sind alle validen, expliziten Effektwerte aus Tabelle 6 grafisch dargestellt. Für Fische (Vertebraten) liegt der tiefste chronische NOEC unter 42 µg/L (Pierson 1991, zitiert in US EPA 1993). Primärproduzenten (Cyanobakterien, Algen und höhere Wasserpflanzen) sind deutlich empfindlicher als Vertreter der anderen Trophieebenen.

Abbildung 1: Grafische Darstellung aller validen Kurzzeit- und Langzeit-Effektdaten aus Tabelle 6 für Linuron (ohne Resultate aus Tests mit Formulierungen und Mikro-/Mesokosmenstudien). Unter Primärproduzenten sind Effektdaten von Cyanobakterien, Algen und Wasserpflanzen aufgeführt. Invertebraten beinhalten Effektdaten zu Krebstieren.

5.1 Vergleich marine/limnische Organismen

Aufgrund der begrenzten Anzahl valider Effektdaten ist ein statistischer Vergleich der Empfindlichkeiten von limnischen und marinen Organismen nicht möglich. Aus den beschränkten Daten zur Toxizität von Linuron gegenüber marinen Organismen konnte keine besondere Empfindlichkeit im Vergleich mit limnischen Arten ausgemacht werden.

6 Herleitung der EQS

Um chronische und akute Qualitätsziele herzuleiten, kann die Sicherheitsfaktormethode (AF-Methode) auf der Datenbasis von akuten und chronischen Toxizitätsdaten verwendet werden. Dabei wird mit dem tiefsten chronischen Datenpunkt ein AA-EQS (Annual-Average-Environmental-Quality-Standard) und mit dem tiefsten akuten Datenpunkt ein MAC-EQS (Maximum-Acceptable-Concentration-Environmental-

Quality-Standard) abgeleitet. Wenn der Datensatz umfassend genug ist, können diese EQS zusätzlich mittels einer Speziessensitivitätsverteilung (SSD) bestimmt werden. Valide Mikro-/Mesokosmosstudien dienen einerseits zur Verfeinerung des AF, der durch eine SSD hergeleitet wurde. Andererseits können sie auch direkt zur Bestimmung eines EQS verwendet werden. Die Evaluation der Mikro- und Mesokosmosstudien basiert auf den Qualitätsleitlinien beschrieben im TGD for EQS und de Jong et al. (2008).

7 Chronische Toxizität

7.1 AA-EQS Herleitung mit AF-Methode

Es liegen belastbare chronische Effektdaten für die trophischen Ebenen der Primärproduzenten (Cyanobakterien, Algen und höhere Wasserpflanzen), Krebstiere und Fische vor (Tabelle 7).

Tabelle 7: Übersicht zu den kritischen Toxizitätswerten für Wasserorganismen aus längerfristigen Untersuchungen für Linuron.

Gruppe	Art	Wert	Konz. in μg/L	Referenz							
<u>Basisdatensatz</u>	<u>Basisdatensatz</u>										
Primärproduzenten	Scenedesmus vacuolatus	EC10	2.55	Backhaus et al. 2004							
Krebstiere	Daphnia magna	NOEC	153	Geom. Mittel aus Baer 1991, zitiert in US EPA 1992 und US EPA 2008; Fischer 1987, zitiert in EC 1996							
Fische	Oncorhynchus mykiss (ELS Test)	NOEC	21	Pierson 1991, zitiert in US EPA 1993							
<u>Weitere</u>	<u>Weitere</u>										
Würmer	Tubifex sp.	NOEC	≥ 1'000	Knauf und Schulze 1972							
Mollusken	Lymnaea stagnalis	NOEC	≥ 100	Knauf und Schulze 1972							

Für Fische lag kein expliziter NOEC vor, es konnte aber ein NOEC aus LOEC/2 bestimmt werden. Für Würmer und Mollusken liegen die NOECs mit \geq 1'000 µg/L, bzw. 100 µg/L deutlich über dem tiefsten Wert (EC10 = 2.55 µg/L). Dieser stammt von der Grünalge *Scenedesmus vacuolatus*, einem Vertreter der Primärproduzenten, welche aufgrund des Wirkmechanismus von Linuron erwartungsgemäss am empfindlichsten sind. Daher wird trotz des fehlenden expliziten Effektwerts für eine Fischspezies ein AF von 10 als vertretbar erachtet. Daraus ergibt sich folgendes chronisches Qualitätskriterium:

$$AA-EQS (AF) = 2.55 \mu g/L / 10 = 0.255 \mu g/L = 0.26 \mu g/L$$

7.2 AA-EQS mit SSD-Methode

Für die Herleitung eines AA-EQS mithilfe einer SSD sind zu wenige valide Daten vorhandenen. Aufgrund des spezifischen Wirkmechanismus von Linuron sollte eine spezifische SSD für Primärproduzenten erstellt werden. Es liegen allerdings nur Daten für 8 Vertreter der Primärproduzenten vor. Nach dem TGD for EQS sind aber mindestens 10 Datenpunkte erforderlich (15 Datenpunkte empfohlen).

7.3 AA-EQS aus Mikro-/Mesokosmosstudien

Es wurden einige Mikro- und Mesokosmosstudien mit Linuron und der Formulierung Afalon (450 μg a.i./L) durchgeführt. Die tiefsten NOECs liegen zwischen 0.46 μg/L und 4.93 μg/L (Cuppen *et al.* 1997; Van den Brink *et al.* 1997), bzw. zwischen 0.5 μg/L und 5 μg/L (Snel *et al.* 1998). Beide resultieren aus als valide eingestuften Mikrokosmosstudien mit Afalon über 3 – 4 Wochen und betreffen die Abundanz von Algenarten, bzw. das Wachstum einer höheren Wasserpflanze (*Elodea nuttallii*). In einer lotischen Mesokosmosstudie, in der Afalon 3 mal 7 Tage mit dazwischenliegenden 3-wöchigen Erholungsperioden appliziert wurde, wurden keine Effekte auf Algen und Zooplankton unter 5 μg/L beobachtet (Van Geest *et al.* 1999). Die NOECs aus den Mikro- und Mesokosmosstudien liegen alle über dem AA-EQS-Vorschlag von 0.26 μg/L.

8 Akute Toxizität

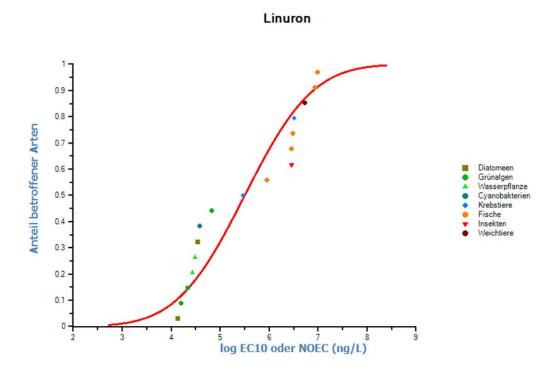
8.1 MAC-EQS Herleitung mit AF-Methode

Es liegen valide EC50-Werte für Primärproduzenten (Cyanobakterien/Algen/höhere Wasserpflanzen) sowie Krebstiere, Fische, Bakterien, Insekten und Mollusken vor (Tabelle 8). Linuron wird gemäss der Europäischen Kommission (EC 2001b) als sehr giftig eingestuft (Tabelle 9).

Tabelle 8: Übersicht der kritischen akuten Toxizitätswerte für Wasserorganismen für Linuron.

Gruppe	Spezies	Wert	Konz (µg/L)	Referenz
<u>Basisdatensatz</u>				
Primärproduzenten	Navicula pelliculosa	EC50	13.7	T.R. Wilbury Laboratories 1996, zitiert in OPP 2012 und US EPA 2008
Krebstiere	Daphnia magna	EC50	290	Geom. Mittel aus Litchfield und Stahl Jr. 1985, zitiert in US EPA 1985a; Mayer und Ellersieck 1986; Knauf 1980a, zitiert in EC 1996
Fische	Cyprinodon variegatus	LC50	890	Ward und Boeri 1991, zitiert in US EPA 1995
<u>Weitere</u>				
Bakterien	Aliivibrio fischeri	EC50	5500	Hernando et al. 2003
Insekten	Chironomus plumosus	EC50	2900	Mayer und Ellersieck 1986
Mollusken	Crassostrea virginica	EC50	5400	Ward und Boeri 1991, zitiert in US EPA 1995 und OPP 2012

Tabelle 9: Risikoklassierung der akuten aquatischen Toxizität anhand der niedrigsten gemessenen EC50-Werte nach der Europäischen Kommission (EC 2001b).


Risikoklasse	Niedrigster EC50-Wert	Erreichter Wert
Nicht eingestuft	>100 mg/L	
schädlich	<100 mg/L; >10 mg/L	
Giftig	<10 mg/L; >1mg/L	
Sehr giftig	<1mg/L	Х

Der tiefste akute Effektwert stammt von der Diatomee *Navicula pelliculosa* und beträgt 13.7 µg/L. Ein AF von 100 kann auf den niedrigsten Effektwert angewendet werden, wenn alle trophischen Ebenen repräsentiert sind. Der AF kann gemäss TGD for EQS auf 10 erniedrigt werden, wenn der Wirkmechanismus bekannt und ein repräsentativer Vertreter der empfindlichsten Art im Effektdatensatz mit dem tiefsten Wert vertreten ist. Diese Bedingungen sind erfüllt.

MAC-EQS (AF) =
$$13.7 \,\mu\text{g/L} / 10 = 1.37 \,\mu\text{g/L}$$

8.2 MAC-EQS mit SSD Methode

Die Datenanforderungen nach dem TGD for EQS für eine SSD sind gegeben. Abbildung 2 zeigt die SSD mit den niedrigsten akuten Effektwerten pro Art aus Tabelle 6. Die Datenpunkte sind nicht normalverteilt (siehe A3). Es ist ein deutlicher Toxizitätssprung nach den Primärproduzenten zu erkennen welcher auf den spezifischen Wirkmechanismus von Linuron auf Primärproduzenten zurückzuführen ist. Eine SSD mit Effektwerten von ausschliesslich Primärproduzenten ist leider nicht möglich, da gemäss TGD for EQS mindestens 10 Datenpunkte vorhanden sein müssen (es liegen nur 8 vor).

Abbildung 2: Species Sensitivity Distribution (SSD) aller Arten erstellt mit den akuten Effektdaten aus Tabelle 6. Detaillierte Informationen zur SSD im Appendix (Tabellen A1 – A3 und Abbildung A1).

8.3 MAC-EQS aus Mikro-/Mesokosmosstudien

Es sind keine Mikro-/Mesokosmosstudien mit akuten Effektwerten vorhanden.

9 Bewertung des Bioakkumulationspotentials und der sekundären Intoxikation

Nach dem TGD for EQS (EC, 2011) soll zur Abschätzung des Risikos einer sekundären Intoxikation zunächst das Bioakkumulationspotential einer Substanz bestimmt werden. Dabei liefert ein gemessener Biomagnifikationsfaktor (BMF) von >1 oder ein Biokonzentrationsfaktor (BCF) >100 einen Hinweis auf ein Bioakkumulationspotential. Liegen keine verlässlichen BMF oder BCF Daten vor, kann stattdessen der $\log K_{\rm OW}$ zur Abschätzung verwendet werden, welcher ab einem Wert von >3 auf ein Bioakkumulationspotential hinweist.

Der log K_{OW} von Linuron ist in der Literatur mit 2.8 – 3.2 angegeben (siehe Tabelle 1). In EC (1996) werden Biokonzentrationsfaktoren (BKF) von 38 und 49 für *Lepomis macrochirus* aus einer Laborstudie über 28 Tage von Hutton *et al.* (1985) angegeben. Dieser Wert liegt unter dem Triggerwert von 100 für potentielle Bioakkumulation und es muss gemäss dem TGD for EQS kein EQS_{biota} Wert abgeleitet werden.

10 Schutz der aquatischen Organismen

Der Effektdatensatz zur Kurzzeittoxizität umfasst alle 3 trophischen Ebenen und zeigt, dass Primärproduzenten empfindlicher auf Linuron reagieren als Vertreter anderer taxonomischer Gruppen. Unterschiede in der Empfindlichkeit zwischen limnischen und marinen Organismen konnten keine festgestellt werden. Es werden folgende EQS vorgeschlagen:

AA-EQS = $0.26 \mu g/L$ MAC-EQS = $1.37 \mu g/L$.

Beide EQS bieten auf Basis der aktuellen Datenlage genügend Schutz für aquatische Lebewesen. Eine Lebenszyklusstudie mit Fischen wäre wünschenswert, um die Langzeitwirkung von Linuron auf Vertebraten genauer untersuchen zu können, insbesondere da es Hinweise auf eine endokrine Wirkung von Linuron gibt (Hogan *et al.* 2012; Marlatt *et al.* 2013; Uren Webster *et al.* 2015 und Referenzen darin).

Von den Transformationsprodukten zeigt DCPMU eine ähnliche Toxizität auf Algen und Fische wie Linuron (Tabelle 2). DCA scheint auch ähnlich toxisch auf *Daphnia magna* zu wirken (Tabelle 4). Die restlichen Effektwert sind deutlich höher als für Linuron (Tabelle 2-4). Es gibt allerdings Hinweise auf eine endokrine Wirkung (anti-androgen) der Haupttransformationsprodukte (DCA, DCPU und DCPMU) auf Fische (*Oreochromis niloticus*), bei Konzentrationen im Bereich von 0.2 µg/L (Pereira et al. 2015).

Basierend auf einem kürzlich veröffentlichten "renewal report for the active substance linuron" des Standing Committee on Plants, Animals, Food and Feed der Europäischen Kommission (EC, 2016) wurde die Genehmigung für den Wirkstoff Linuron in der EU nicht erneuert (siehe Durchführungsverordnung

(EU) 2017/244 der Kommission vom 10. Februar 2017). Die Mitgliedstaaten der EU müssen bis spätestens 3. Juni 2017 die Zulassungen für Pflanzenschutzmittel, die Linuron als Wirkstoff enthalten, widerrufen. Im *renewal report* wird auf Datenlücken hingewiesen, welche eine ökotoxikologische Bewertung nicht vollumfänglich erlauben. Des Weiteren wird auf eine Klassifizierung von Linuron als reproduktionstoxisch Kategorie 1B (nach Regulation (EC) No 1272/200810) und einer Kanzerogenität Kategorie 2 (nach Regulation (EC) No 1272/2008) verwiesen.

Im *renewal report* wird ausserdem auf einen *renewal assessment report* (RMS Italien) verwiesen, welcher am 15 April 2015 zur Europäischen Kommission und der European Food Safety Authority (EFSA) geschickt wurde, aber zur Zeit noch nicht öffentlich verfügbar ist.

11 Änderungen gegenüber der Version vom 18.07.2013

Das vorliegende Dossier und die davon abgeleiteten EQS-Vorschläge bleiben im Wesentlichen unverändert. Keine der in die Effektdatensammlung aufgenommenen Studien war sensitiver als die zuvor vorliegenden kritischen Studien. Erwähnenswert ist, dass sich in der neueren Literatur vermehrt Hinweise auf eine endokrine Wirkung von Linuron und seinen Abbauprodukten finden, und dies auch schon bei relative niedrigen Konzentrationen.

Eine Anpassung des EQS-Dossiers nach Veröffentlichung des *renewal assessment reports* könnte in Zukunft vermutlich nötig werden.

12 Referenzen

- Abou-Waly H, Shabana E F (1993): Recovery of *Nostoc muscorum* previously exposed to some triazine and phenylurea herbicides. Bulletin of Environmental Contamination and Toxicology 50(5): 665-673
- ACP (1995): Evaluation of Fully Approved or Provisionally Approved Products. Evaluation on: Linuron. York: Advisory Committee on Pesticides
- Andersson M, Kreuger J (2011): Preliminära riktvärden för växtskyddsmedel i ytvatten. Sveriges lantbruksuniversitet (SLU)
- Aslim B, Ozturk S (2009): Toxicity of herbicides to cyanobacterial isolates. Journal of Environmental Biology 30(3): 381-384
- Backhaus T, Faust M, Scholze M, Gramatica P, Vighi M, Grimme L H (2004): Joint algal toxicity of phenylurea herbicides is equally predictable by concentration addition and independent action. Environmental Toxicology and Chemistry 23(2): 258-264.
- Baer K N (1991): Chronic Toxicity of DPX-Z326-198 (Linuron) to *Daphnia magna*. Laboratory Report No. 558-91. Prepared by Haskell Laboratory for Toxicology and Industrial Medicine, E.I. du Pont de Nemours and Co., NEwark, DE. EPA MRID No. 421534-01.
- Boeri R L, Magazu J P, Ward T J (1996): Chronic Toxicity of DPX-Z326-198 (Linuron) to the Mysid, *Mysidopsis bahia*. T.R. Wilbury Laboratories, Inc., Marblehead, MA, USA. Sponsor: E.I. du Pont de Nemours and Company, Newark, DE, USA (unveröffentlicht)
- Briggs G G (1981): Adsorption of pesticides by some Australian soils. Australian Journal of Soil Research 19(1): 61-68
- Brüggemann R, Schwaiger J, Negele R D (1995): Applying Hasse diagram technique for the evaluation of toxicological fish tests. Chemosphere 30(9): 1767-1780
- Burešová H., Crum S.J.H., Belgers J.D.M., Adriaanse P.I., Arts G.H.P. (2013): Effects of linuron on a rooted aquatic macrophyte in sediment-dosed test systems. Environ. Pollut. 175, 117-124.
- Cain R C, Cain R K (1983): The Effects of Selected Herbicides on Zygospore Germination and Growth of *Chlamydomonas Moewusii* (Chlorophyceae, Volvocales). J Phycol 19: 301 305
- Caux P Y, Kent R A, Fan G T, Grande C (1998): Canadian water quality guidelines for linuron. Environmental Toxicology and Water Quality 13(1): 1-41
- CCME (1999): Canadian Water Quality Guidelines for the Protection of Aquatic Life Linuron. Canadian Council of Ministers of the Environment
- Christopher S V, Bird K T (1992): The effects of herbicides on development of *Myriophyllum spicatum* L. cultured in vitro. Journal of Environmental Quality 21(2): 203-207
- Crane M, Maycock D, Watts C D, Atkinson C, Johnson I (2008): Proposed EQS for Water Framework Directive Annex VIII substances: Linuron. Environment Agency (UK)
- Cullimore, D R (1975): The in vitro sensitivity of some species of Chlorophyceae to a selected range of herbicides. Weed Res. 15:401|406.
- Cuppen J G M, Van Den Brink P J, Van Der Woude H, Zwaardemaker N, Brock T C M (1997): Sensitivity of macrophyte-dominated freshwater microcosms to chronic levels of the herbicide linuron II. Community metabolism and invertebrates. Ecotoxicology and Environmental Safety 38(1): 25-35
- Daam M A, Rodrigues A M F, Van den Brink P J, Nogueira A J A (2009): Ecological effects of the herbicide linuron in tropical freshwater microcosms. Ecotoxicology and Environmental Safety 72(2): 410-423
- Daam M A, Van Den Brink P J (2007): Effects of chlorpyrifos, carbendazim, and linuron on the ecology of a small indoor aquatic microcosm. Archives of Environmental Contamination and Toxicology 53(1): 22-35

- De Jong F M W, Brock T C M, Foekema E M, Leeuwangh P (2008): Guidance for Summarizing and Evaluating Aquatic Micro- and Mesocosm Studies. National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Douglas M und Handley J (1988): The Algistatic Activity of Linuron Technical (DPX-Z326). Lab Project Number: DPT 171R/88602. Huntingdon Research Centre Ltd. (unveröffentlicht)
- Devine M, Duke S O, Fedtke C (1993): Physiology of Herbicide Action. Prentice-Hall, Englewood Cliffs, NJ, USA
- EC (1996): Council Directive 91/414/EEC. Regulation 3600/92. Linuron Volume 3. Annex B to the Report and Proposed Decision of the United Kingdom made to the European Commission under Article 7(1) of Regulation 3600/92. B.8 Ecotoxicology
- EC (2001a): Council Directive 91/414/EEC. Regulation 3600/92. Linuron Volume 3. Annex B ADDENDUM to the Report and Proposed Decision of the United Kingdom made to the European Commission under Article 7(1) of Regulation 3600/92.
- EC (2001b): Richtlinie 2001/59/EG der Kommission vom 6. August 2001 zur 28. Anpassung der Richtlinie 67/548/EWG des Rates zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten für die Einstufung, Verpackung und Kennzeichnung gefährlicher Stoffe an den technischen Fortschritt. Annex 6. Amtsblatt der europäischen Gemeinschaften L225/263. Europäische Kommission
- EC (2002): Review report for the active substance linuron. Europäische Kommission
- EC (2011): Technical Guidance For Deriving Environmental Quality Standards. Europäische Kommission
- EC (2016): Renewal report for the active substance linuron finalised in the Standing Committee on Plants, Animals, Food and Feed at its meeting on 7 December 2016; SANTE/10944/2016 Rev 1
- Envirosystem & Engineering Inc. (1991): unveröffentlicht
- EPI (2011): Version 4.10 .The EPI (Estimation Programs Interface) Suite™. A Windows®-based suite of physical/chemical property and environmental fate estimation programs developed by the EPA's Office of Pollution Prevention Toxics and Syracuse Research Corporation (SRC)
- Fischer R (1989a): Linuron-substance technical (Hoe 00281000ZD960004). Effect to Scenedesmus subspicatus CHODAT (green alga) in a growth inhibition test (method OECD). A41838 (unveröffentlicht)
- Fischer R (1989b): Linuron-substance technical (Hoe 00281000ZD960004) effect to *Salmo gairdneri* (Rainbow trout) in a 21 day prolonged toxicity test (method OECD). A41861 (unveröffentlicht)
- Fleming W J, Ailstock M S, Momot J J (1995): Net photosynthesis and respiration of sago pondweed (*potamogeton pectinatus*) exposed to herbicides. ASTM. Atlanta, GA, USA. 303-317
- Gatidou G., Stasinakis A.S., latrou E.I. (2015): Assessing single and joint toxicity of three phenylurea herbicides using Lemna minor and Vibrio fischeri bioassays. Chemosphere 119, S69-S74.
- Girman G R (1975): The Effects of a Number of Herbicides Upon Photosynthesis and Heterotrophy of Naturally Occuring Algal and Bacterial Communities in Delta Marsh, Manitoba. Master Thesis. University of Manitoba
- GSBL (2012): Gemeinsamer Stoffdatenpool Bund/Länder, Umweltbundesamt, Deutschland. http://www.gsbl.de
- Haskell Laboratory (1996): E.I. Dupont Corp., Newark, USA (unveröffentlicht)
- Hernando M D, Ejerhoon M, Fernández-Alba A R, Chisti Y (2003): Combined toxicity effects of MTBE and pesticides measured with *Vibrio fischeri* and *Daphnia magna* bioassays. Water Research 37(17): 4091-4098
- Heusel R (1997): Acute toxicity to *Daphnia magna* (waterflea). AE F023192 substance, technical 99%. Code: AE F023192 00 1C99 0001. A58520 (unveröffentlicht)
- Heusel R und Weller O (1998): Linuron substance, technical 95.0%. Code: AE F002810 00 1D95 0006. Duckweed (*Lemna gibba* G3) growth inhibition test. A59713 (unveröffentlicht)

- Hogan N.S., Gallant M.J., van den Heuvel M.R. (2012): Exposure to the pesticide linuron affects androgen-dependent gene expression in the three-spined stickleback (Gasterosteus aculeatus). Environmental Toxicology and Chemistry 31, 1391-1395.
- Holst R W, Yopp J H, Kapusta G (1982): Effect of Several Pesticides on the Growth and Nitrogen Assimilation of the *Azolla-Anabaena* Symbiosis. Weed Science 30(1): 54 58
- Hulsen K, Minne V, Lootens P, Vandecasteele P, Höfte M (2002): A chlorophyll a fluorescence-based *Lemna minor* bioassay to monitor microbial degradation of nanomolar to micromolar concentrations of linuron. Environmental Microbiology 4(6): 327-337
- Huntington Research Center (1988): unveröffentlicht
- Hutton D G, Kasprzak D J, Waterer J C, Litchfield C D, Sarrif, A M, Fisher R L (1985): Laboratory studies of phenyl-14C(u) Linuron Bioconcentration in Bluegill Sunfish. A40127 (unveröffentlicht)
- INERIS (2009): Linuron n° CAS: 330-55-2. Nationales Institut für Industrie- und Umweltrisiken (Frankreich)
- Jolly C, Katsiadaki I, Morris S, Le Belle N, Dufour S, Mayer I, Pottinger T G, Scott A P (2009): Detection of the antiandrogenic effect of endocrine disrupting environmental contaminants using *in vivo* and *in vitro* assays in the threespined stickleback. Aquatic Toxicology 92(4): 228-239
- Kashian D R, Dodson S I (2002): Effects of common-use pesticides on developmental and reproductive processes in *Daphnia*. Toxicology and Industrial Health 18(5): 225-235
- Katsiadaki I, Morris S, Squires C, Hurst M R, James J D, Scott A P (2006): Use of the three-spined stickleback (*Gasterosteus aculeatus*) as a sensitive in vivo test for detection of environmental antiandrogens. Environmental health perspectives 114 Suppl 1: 115-121
- Kemp W M, Boynton W R, Cunningham J J (1985): Effects of atrazine and linuron on photosynthesis and growth of the macrophytes, *Potamogeton perfoliatus* L. and *Myriophyllum spicatum* L. in an estuarine environment. Marine Environmental Research 16(4): 255-280
- Klimisch H J, Andreae M, Tillmann U (1997): A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology 25(1): 1-5
- Knauf W (1980a): The effect of Hoe 02810-active ingredient (Code: Hoe028100HAT203) on waterflea (*Daphnia magna*) in a static test. A19329 (unveröffentlicht)
- Knauf W (1980b): The acute toxicity of Hoe 02810-Active ingredient (code Hoe 028100HAT203) to the Rainbow trout (*Salmo gairdneri* Richardson). A19500 (unveröffentlicht)
- Knauf W (1980c): The acute toxicity of Hoe 02810-Active ingredient (Code:Hoe 028100HAT203) to Catfish (*Ictalurus nebulosus*). A20066 (unveröffentlicht)
- Knauf W, Schulze E F (1972): Langzeiteinfluß subletaler Herbiziddosen auf einige Vertreter der Wasserfauna und -flora am Beispiel von Linuron und Monolinuron. Schriftenreihe Verein Für Wasser 3: 231–239
- Kontiokari V, Mattsoff L (2011): Proposal of Environmental Quality Standards for Plant Protection Products. Finnish Environement Institute (SYKE)
- Kratky B A, Warren G F (1971): A Rapid Bioassay for Photosynthetic and Respiratory Inhibitors. Weed Science 19(6): 658-661
- Lakota S, Raszka A, Roszkowski J (1978): Examination on the toxicity of Diuron, Linuron, Monolinuron and Monuron for the carp fry in the acute test. Medycyna Weterynaryjna 34(1): 20-22
- Litchfield C D, Stahl Jr. R G (1985): Acute Toxicity of Linuron to *Daphnia magna*. Prepared by Haskell Laboratory for Toxicology and Industrial Medicine, Newark, DE; submitted by E. I. du Pont de Nemours & Company (Inc.), Wilmington, DE. Reg. No. 352-326; Acc. No. 258300

- Marlatt V.L., Lo B.P., Ornostay A., Hogan N.S., Kennedy C.J., Elphick J.R., Martyniuk C.J. (2013): The effects of the urea-based herbicide linuron on reproductive endpoints in the fathead minnow (Pimephales promelas). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 157, 24-32.
- Martins J, Soares M L, Saker M L, OlivaTeles L, Vasconcelos V M (2007a): Phototactic behavior in *Daphnia magna*Strauss as an indicator of toxicants in the aquatic environment. Ecotoxicology and Environmental Safety 67(3): 417422
- Martins J C, Saker M L, Oliva Teles L F, Vasconcelos V M (2007b): Oxygen consumption by *Daphnia magna* Strauss as a marker of chemical stress in the aquatic environment. Environmental Toxicology and Chemistry 26(9): 1987-1991
- Mayer F L, Ellersieck M R (1986): Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. Resource Publication US Fish & Wildlife Service 160
- Means J C, Wijayaratne R (1982): Role of natural colloids in the transport of hydrophobic pollutants. Science 215(4535): 968-973
- MELUR (2009): Beurteilung chemischer Stoffe in Oberflächengewässern. Ministerium für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein
- Moermond C, Kase R, Korkaric M, Ågerstrand M (2016): CRED: Criteria for reporting and evaluating ecotoxicity data. Environmental Toxicology and Chemistry 35, 1297-1309.
- Nałęcz-Jawecki G, Kucharczyk E, Sawicki J (2002): The sensitivity of protozoan *Spirostomum ambiguum* to selected pesticides. Fresenius Environmental Bulletin 11(2): 98-101
- Neuwoehner J, Zilberman T, Fenner K, Escher B I (2010): QSAR-analysis and mixture toxicity as diagnostic tools: Influence of degradation on the toxicity and mode of action of diuron in algae and daphnids. Aquatic Toxicology 97(1): 58-67
- Niederlande (2010): Staatscourant. Gouvernment of the Netherlands
- O'Brien M C, Prendeville G N (1979): Effect of herbicides on cell membrane permeability in *Lemna minor*. Weed Research 19(6): 331-334
- OPP (2012): OPP Pesticide Ecotoxicity Database Raleigh, USA. United States Environmental Protection Agency. http://www.ipmcenters.org/Ecotox/
- Orton F, Lutz I, Kloas W, Routledge E J (2009): Endocrine disrupting effects of herbicides and pentachlorophenol: *In vitro* and *in vivo* evidence. Environmental Science and Technology 43(6): 2144-2150
- Oulmi Y, Negele R D, Braunbeck T (1995): Cytopathology of liver and kidney in rainbow trout *Oncorhynchus mykiss* after long-term exposure to sublethal concentrations of linuron. Diseases of Aquatic Organisms 21(1): 35-52
- Pereira T.S.B., Boscolo C.N.P., Silva D.G.H.d., Batlouni S.R., Schlenk D., Almeida E.A.d. (2015): Anti-androgenic activities of diuron and its metabolites in male Nile tilapia (Oreochromis niloticus). Aquat. Toxicol. 164, 10-15.
- Pierson K B (1991): Flow-Through, 80 Day Toxicity of DPX-Z326-198 to Embryo and Larval Rainbow Trout, Oncorhynchus mykiss. Prepared by Haskell Laboratory for Toxicology and Industrial Medicine, E. I. du Pont de Nemours and Company, Newark, DE. Submitted by Du Pont Agriculture Products, Wilmington, DE. EPA MRID No. 420618-04
- Prescott L M, Kubovec M K, Tryggestad D (1977): The effects of pesticides, polychlorinated biphenyls and metals on the growth and reproduction of *Acanthamoeba castellanii*. Bulletin of Environmental Contamination and Toxicology 18(1): 29-34
- Santos S.M.A., Videira R.A., Fernandes M.A.S., Santos M.S., Moreno A.J.M., Vicente J.A.F., Jurado A.S. (2014): Toxicity of the herbicide linuron as assessed by bacterial and mitochondrial model systems. Toxicol. Vitro 28, 932-939.
- Shafiei T M, Costa H H (1990): The susceptibility and resistance of fry and fingerlings of *Oreochromis mossambicus* Peters to some pesticides commonly used in Sri Lanka. J Appl Ichtyol 6: 73 80

- Slijkerman D M E, Moreira-Santos M, Jak R G, Ribeiro R, Soares A M V M, Van Straalen N M (2005): Functional and structural impact of linuron on a freshwater community of primary producers: The use of immobilized algae. Environmental Toxicology and Chemistry 24(10): 2477-2485
- Snel J F H, Vos J H, Gylstra R, Brock T C M (1998): Inhibition of photosystem II (PSII) electron transport as a convenient endpoint to assess stress of the herbicide linuron on freshwater plants. Aquatic Ecology 32(2): 113-123
- Stephenson R R, Kane D F (1984): Persistence and effects of chemicals in small enclosures in ponds. Archives of Environmental Contamination and Toxicology 13(3): 313-326
- Tanaka F S, Hoffer B L, Wien R G (1986): Photolysis of 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (Linuron) in dilute aqueous solution. Toxicology and Environmental Chemistry 11: 271–280
- Tiam S.K., Laviale M., Feurtet-Mazel A., Jan G., Gonzalez P., Mazzella N., Morin S. (2015): Herbicide toxicity on river biofilms assessed by pulse amplitude modulated (PAM) fluorometry. Aquat. Toxicol. 165, 160-171.
- Tierney K B, Ross P S, Kennedy C J (2007): Linuron and carbaryl differentially impair baseline amino acid and bile salt olfactory responses in three salmonids. Toxicology 231(2-3): 175-187
- Tomlin C D S (2009): The Pesticide Manual: British Crop Production Council (BCPC)
- T.R. Wilbury Laboratories (1996): unveröffentlich
- Trenel J und Kühn R (1982): Bewertung wassergefährdender Stoffe im Hinblick auf Lagerung, Umschlag und Transport. Umweltforschungsplan des Bundesministers des Innern. Umweltbundesamt, Deutschland
- Tscheu-Schlüter M, Winter W (1985): Zur Aquatoxizität ausgewählter Harnstoffherbizide und zu ihrer Kategorisierung als Wasserschadstoffe. Acta hydrochim hydrobiol 13(4): 489 497
- UBA (2012): ETOX: Informationssystem Ökotoxikologie und Umweltqualitätsziele Dessau-Rosslau, Deutschland. Umweltbundesamt. http://webetox.uba.de/webETOX/public/search/test/open.do
- UK TAG (2008): Proposals for Environmental Quality Standards for annex viii Substances. UK Technical Advisory Group on the Water Framework Directive
- Uren Webster T.M., Perry M.H., Santos E.M. (2015): The herbicide linuron inhibits cholesterol biosynthesis and induces cellular stress responses in brown trout. Environ. Sci. Technol. 49, 3110-3118.
- US EPA (1985a): Data Evaluation Record. Chemical: Linuron. Shaughnessey No.: 035506. United States Environmental Protection Agency. MRID No. 142932
- US EPA (1985b): Data Evaluation Record Acute Toxicity Study on a Coldwater Fish Species. United States Environmental Protection Agency
- US EPA (1985c): Data Evaluation Record Acute Toxicity Study on a Warmwater Fish Species. United States Environmental Protection Agency
- US EPA (1992): Data Evaluation Record *Daphnia magna* Life-Cycle (21-day Renewal) Chronic Toxicity Test. United States Environmental Protection Agency
- US EPA (1993): Data Evaluation Record Fish Early Life-Stage Chronic Toxicity Test. Species Tested: Rainbow Trout (*Oncorhynchus mykiss*). EPA MRID No. 420618-04. United States Environmental Protection Agency
- US EPA (1995): Reregistration Eligibility Decision (RED) Linuron. United States Environmental Protection Agency
- US EPA (1996): Data Evaluation Record Aquatic Invertebrate Life Cycle Test, guideline 72-4 (B). United States Environmental Protection Agency
- US EPA (1999): Data Evaluation Record Estuarine Fish Early Life-Stage Test, Guideline 72-4 (A). United States Environmental Protection Agency

- US EPA (2004): Linuron Analysis of Risks to Endangered and Threatened Salmon and Steelhead. United States Environmental Protection Agency
- US EPA (2008): Risks of Linuron Use to Federally Threatened California Red-legged Frog (*Rana aurora draytonii*). United States Environmental Protection Agency
- US EPA (2011): Draft biological opinions issued under the endangered species act, by the national marine fisheries sevice, related to pesticide and pacific salmon and steelhead species. United States Environmental Protection Agency
- Van Den Brink P J, Hartgers E M, Fettweis U, Crum S J H, Van Donk E, Brock T C M (1997): Sensitivity of macrophyte-dominated freshwater microcosms to chronic levels of the herbicide linuron. Ecotoxicology and Environmental Safety 38(1): 13-24
- Van Geest G J, Zwaardemaker N G, Van Wijngaarden R P A, Cuppen J G M (1999): Effects of a pulsed treatment with the herbicide afalon (active ingredient linuron) on macrophyte-dominated mesocosms. II. Structural responses. Environmental Toxicology and Chemistry 18(12): 2866-2874
- Wang W, Gorsuch Joseph W, Lower William R (eds) (1990): Multispecies methods of testing for toxicity. Use of the Rhizobium-Legume symbiosis in nitrogen fixation and correlations between responses by algae and terrestrial plants. Atlanta, GA, USA. Publ by ASTM, pp 69-84
- Ward T und Boeri R (1991a): unveröffentlicht
- Ward T und Boeri R (1991b): Static Acute Toxicity of DPX-Z326-198 (Linuron) to the Sheepshead Minnow, *Cyprinodon variegatus*: Lab Project Number: MR-9118-001: 9127-DU: 567-91. Envirosystems, Inc. in coop. with Dupont Haskell Labs (unveröffenticht)
- Ward T und Boeri R (1991c): Static Acute Toxicity of DPX-Z326-198 (Linuron) to Bivalve Mollusc and Larvae: Lab Project Number: MR118-001: 568-91: 9129-DU. EnviroSystems, Inc. in coop. With Dupont Haskell Labs (unveröffentlicht)
- Wetzel J (1986a): Static Acute 96-hour LC50 of Linuron (IN Z-326118) to Bluegill Sunfish (*Lepomis macrochirus*): Rept. No. 52786. E.I. du Pont de Nemours and Co., Inc. (unveröffentlicht)
- Wetzel J (1986b): Static Acute 96-hour LC50 of Linuron (INZ-326118) to Rainbow Trout (*Salmo gairdneri*): Rept. No. HLR 525-86. Dupont Haskell Laboratory (unveröffentlicht)
- WSSA (1989): Herbicide Handbook. Weed Science Society of America (WSSA), Champaigne, IL. DFTM herbicide specimen label. Agricultural Products, Du Pont Canada Inc., Mississauga, Ontario
- Zhang P., Bui A., Rose G., Allinson G. (2014): Mixed-mode solid-phase extraction coupled with liquid chromatography tandem mass spectrometry to determine phenoxy acid, sulfonylurea, triazine and other selected herbicides at nanogram per litre levels in environmental waters. J. Chromatogr. A 1325, 56-64.
- Zhu B., Liu T., Hu X., Wang G. (2013): Developmental toxicity of 3, 4-dichloroaniline on rare minnow (Gobiocypris rarus) embryos and larvae. Chemosphere 90, 1132-1139.

Appendix

Tabelle A1: Verwendete EC50/LC50-Werte zur Erstellung der SSD mit allen Arten und Zuordnung der Artnamen zu den in der SSD verwendeten Werten.

EC50 (μg/L)	Art	Taxonomische Gruppe
13.7	Navicula pelliculosa	Diatomeen
16	Scenedesmus subspicatus	Grünalgen
21.8	Scenedesmus vacuolatus	Grünalgen
27.3	Lemna gibba	Wasserpflanze
30.5	Lemna minor	Wasserpflanze
35.2	Skeletonema costatum	Diatomeen
38.8	Anabaena flos-aquae	Cyanobakterien
67	Pseudokirchneriella subcapitata	Grünalgen
290	Daphnia magna	Krebstiere
890	Cyprinodon variegatus	Fische
2900	Chironomus plumosus	Insekten
2900	Ictalurus punctatus	Fische
3100	Oncorhynchus mykiss	Fische
3300	Americamysis bahia	Krebstiere
5400	Crassostrea virginica	Weichtiere
8600	Poecilia reticulata	Fische
9600	Lepomis macrochirus	Fische


Tabelle A2: HC5 der SSD der akuten EC50/LC50-Werte (in ng/L) für alle Arten - berechnet mit dem Programm ETX 2.1 (van Vlaardingen *et al.* 2004).

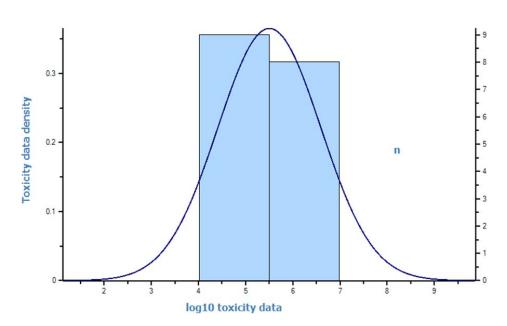

D		and the full and an						
		mal distribution						
Name	Value	Description						
mean	5.503343	mean of the log toxicity values						
s.d.	1.092399	sample standard deviation						
n	17	sample size						
HC5 result	s							
Name	Value	log10(Value)						
LL HC5	612.8447	2.78735						
HC5	4701.622	3.672248						
UL HC5	18062.88	4.256787						
sprHC5	29.47383	1.469437						
FA At HC5	results							
Name	Value	Description						
FA lower	1.104	5% confidence limit of the FA at standardised median logHC5						
FA	5	50% confidence limit of the FA at standardised median logHC5						
median		_						
FA upper	15.223	95% confidence limit of the FA at standardised median logHC5						
HC50 resu	Its							
Name	Value	log10(Value)						
LL HC50	109844.6	5.040779						
HC50	318671.4	5.503343						
UL HC50	924501	5.965907						
sprHC50	8.416445	0.925129						
FA At HC5	0 results							
Name	Value	Description						
FA lower	34.49704	5% confidence limit of the FA at standardised median logHC50						
FA	50	50% confidence limit of the FA at standardised median logHC50						
median								
FA upper	65.50296	95% confidence limit of the FA at standardised median logHC50						

Tabelle A3: "Goodness of fit" für die SSD der akuten EC50/LC50-Werte für alle Arten - berechnet mit dem Programm ETX 2.1 (van Vlaardingen *et al.* 2004).

Anderson-Dar	ling test for	normality							
Sign. level	Critical	Normal?							
0.1	0.631	Rejected							
0.05	0.752	Rejected		AD Statistic:	1.119927				
0.025	0.873	Rejected		n:	17				
0.01	1.035	Rejected							
Kolmogorov-S	mirnov test	for normality							
Sign. level	Critical	Normal?							
0.1	0.819	Rejected							
0.05	0.895	Rejected		KS Statistic:	0.957905				
0.025	0.995	Accepted		n:	17				
0.01	1.035	Accepted							
Cramer von M	ises test for	normality							
Sign. level	Critical	Normal?							
0.1	0.104	Rejected							
0.05	0.126	Rejected		CM Statistic:	0.178331				
0.025	0.148	Rejected		n:	17				
0.01	0.179	Accepted							

Abbildung A1: Histogramm für die SSD der chronischen EC50-Werte für alle Arten - berechnet mit dem Programm ETX 2.1 (van Vlaardingen *et al.* 2004).

